留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

VSV调节机构运动精度可靠度计算及误差分析

杨奕凤 王艺 刘傲宇 李佳 谢里阳

杨奕凤,王艺,刘傲宇,等. VSV调节机构运动精度可靠度计算及误差分析[J]. 北京航空航天大学学报,2025,51(6):2070-2080 doi: 10.13700/j.bh.1001-5965.2023.0410
引用本文: 杨奕凤,王艺,刘傲宇,等. VSV调节机构运动精度可靠度计算及误差分析[J]. 北京航空航天大学学报,2025,51(6):2070-2080 doi: 10.13700/j.bh.1001-5965.2023.0410
YANG Y F,WANG Y,LIU A Y,et al. Calculation and error analysis of kinematic accuracy reliability of VSV adjustment mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2070-2080 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0410
Citation: YANG Y F,WANG Y,LIU A Y,et al. Calculation and error analysis of kinematic accuracy reliability of VSV adjustment mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2070-2080 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0410

VSV调节机构运动精度可靠度计算及误差分析

doi: 10.13700/j.bh.1001-5965.2023.0410
基金项目: 

国家科技重大专项(J2019-Ⅳ-0002-0069)

详细信息
    通讯作者:

    E-mail:diyuanyinian@163.com

  • 中图分类号: V233.95;TB114

Calculation and error analysis of kinematic accuracy reliability of VSV adjustment mechanism

Funds: 

National Science and Technology Major Project (J2019-Ⅳ-0002-0069)

More Information
  • 摘要:

    以某航空发动机可调静子叶片(VSV)调节机构为研究对象,建立了含运动副间隙的运动学模型。考虑到驱动误差、尺寸误差和装配间隙等因素的随机性,建立了考虑各静子叶片运动精度失效相关的VSV调节机构运动精度可靠性模型。引入BP神经网络(BPNN)代理模型,采用Monte Carlo方法计算了机构的可靠度,给出了可靠度随静子叶片数量和失效阈值的变化规律。通过与单元失效独立假设的系统模型和完全相关系统模型进行对比,验证了考虑失效相关性的机构运动精度可靠性模型的合理性。提出了一种估算代理模型误差造成的复杂系统可靠度误差的方法,并证明了该VSV调节机构的可靠度计算结果是准确可信的。

     

  • 图 1  VSV调节机构

    Figure 1.  The variable stator vane adjustment mechanism

    图 2  VSV调节机构运动简图

    Figure 2.  The kinematic sketch of VSV adjustment mechanism

    图 3  有效长度模型示意图

    Figure 3.  Schematic diagram of the effective link model

    图 4  各级静子叶片转角随作动筒位移的变化

    Figure 4.  The variation of stator vane rotation angles at each stage with actuator displacement

    图 5  BP神经网络的示意图

    Figure 5.  Schematic depiction of an BPNN

    图 6  各级静子叶片最大转角误差随作动筒位移的变化

    Figure 6.  The variation of the maximum rotation angle error of stator vanes at each stage with actuator displacement

    图 7  BP神经网络代理模型训练结果

    Figure 7.  The training results of the BPNN surrogale model

    图 8  基于BP神经网络的VSV调节机构可靠度计算流程

    Figure 8.  Reliability calculation process of VSV adjustment mechanism based on BPNN

    图 9  VSV调节机构转角误差频率分布直方图

    Figure 9.  The frequency distribution histogram of rotation angle error of VSV adjustment mechanism

    图 10  某个静子叶片转角误差频率分布直方图

    Figure 10.  The frequency distribution histogram of a certain stator vane rotation angle error

    图 11  系统可靠度与静子叶片数量之间的关系

    Figure 11.  The relationship between system reliability and the number of stator vanes

    图 12  系统可靠度与失效判据之间的关系

    Figure 12.  The relationship between system reliability and failure threshold

    图 13  理论模型响应和代理模型响应的关系

    Figure 13.  Relationship between theoretical and surrogate model response

    图 14  可靠度计算误差

    Figure 14.  Calculation errors of reliability

    图 15  可靠度误差估算示意图

    Figure 15.  Diagram of error estimation of reliability

    图 16  全局与局部输出响应误差区间对比

    Figure 16.  Comparison of global and local output response error interval

    图 17  可靠度计算误差分析流程

    Figure 17.  Reliability calculation error analysis process

    表  1  主要影响因素的分布

    Table  1.   Distribution of main influencing factors

    影响因素 均值/mm 方差/mm2 下限/mm 上限/mm
    驱动误差 0 0.1502 −0.45 0.45
    曲柄尺寸误差 0 0.0202 −0.06 0.06
    联动环尺寸误差 0 0.0332 −0.1 0.1
    外摇臂尺寸误差 0 0.0232 −0.07 0.07
    曲柄x方向定位误差 0 0.3332 −1 1
    摇臂尺寸误差 0 0.0502 −0.15 0.15
    摇臂-联动环运动副间隙 0.09 0.0102 0.06 0.12
    下载: 导出CSV

    表  2  不同代理模型精度下的可靠度误差

    Table  2.   Reliability error under different accuracy of the surrogate model

    训练次数 δmax-total nerror εsample/% ε/%
    112 1×10−3 685 0.14 0.12
    366 5×10−4 284 0.06 0.04
    892 1×10−4 90 0.02 0.01
    3585 5×10−5 53 0.01 0.01
    8936 1×10−5 23 0.00 0.00
    18626 5×10−6 7 0.00 0.00
    下载: 导出CSV

    表  3  不同失效阈值下的可靠度误差

    Table  3.   Reliability error under different failure threshold

    Δ0/(°) R/% nerror εsample/% ε/%
    0.75 54.61 292 0.06 0.05
    0.80 64.76 203 0.04 0.04
    0.85 73.84 161 0.03 0.03
    0.90 81.55 103 0.02 0.02
    0.95 87.71 60 0.01 0.01
    1.00 92.25 23 0.00 0.00
    1.05 95.47 11 0.00 0.00
    1.10 97.58 0 0.00 0.00
    下载: 导出CSV
  • [1] 王云. 航空发动机原理[M]. 北京: 北京航空航天大学出版社, 2009: 85-99.

    WANG Y. Aeroengine principle[M]. Beijing: Beihang University Press, 2009: 85-99(in Chinese).
    [2] 曹志鹏, 刘波, 丁伟. 静叶角度调节对组合压气机性能优化机理[J]. 北京航空航天大学学报, 2007, 33(8): 878-881. doi: 10.3969/j.issn.1001-5965.2007.08.003

    CAO Z P, LIU B, DING W. Stator setting angles adjustment on performance improvement of axial-centrifugal compressor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(8): 878-881(in Chinese). doi: 10.3969/j.issn.1001-5965.2007.08.003
    [3] 隋岩峰, 邴连喜, 施磊, 等. 某发动机高压压气机进口可调静子叶片角度控制方法[J]. 航空动力学报, 2010, 25(11): 2589-2593.

    SUI Y F, BING L X, SHI L, et al. Control method of compressor stator vane angle for an aero-engine[J]. Journal of Aerospace Power, 2010, 25(11): 2589-2593(in Chinese).
    [4] 于嘉鹏, 孙加明, 纪福森, 等. 航空发动机静叶联调机构运动分析及优化[J]. 航空动力学报, 2019, 34(6): 1193-1200.

    YU J P, SUN J M, JI F S, et al. Motion analysis and optimization of jointly adjusting mechanism of aero-engine stator vane[J]. Journal of Aerospace Power, 2019, 34(6): 1193-1200(in Chinese).
    [5] 张哲, 王汉平, 孙浩然, 等. VSV调节机构阻滞力和调节精度的归因分析[J]. 航空学报, 2020, 41(12): 380-390.

    ZHANG Z, WANG H P, SUN H R, et al. Attribution analysis of blocking force and adjustment accuracy of adjusting mechanism of variable stator vane[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 380-390(in Chinese).
    [6] 高华, 翟敬宇, 张昊, 等. 考虑转动副特性的发动机静叶调节机构动态性能分析[J]. 动力学与控制学报, 2022, 20(1): 51-59.

    GAO H, ZHAI J Y, ZHANG H, et al. Dynamic performance analysis of engine VSV adjustment mechanism considering the characteristics of revolute joint[J]. Journal of Dynamics and Control, 2022, 20(1): 51-59(in Chinese).
    [7] 唐佑远, 郭为忠. 静叶调节机构尺度全局优化设计方法研究[J]. 机械工程学报, 2020, 56(11): 26-36. doi: 10.3901/JME.2020.11.026

    TANG Y Y, GUO W Z. Global dimensional optimization for the design of adjusting mechanism of variable stator vanes[J]. Journal of Mechanical Engineering, 2020, 56(11): 26-36(in Chinese). doi: 10.3901/JME.2020.11.026
    [8] 庞欢. 飞机典型机构运动功能可靠性建模方法及应用[D]. 西安: 西北工业大学, 2016: 13-20.

    PANG H. Modeling method and application of motion function reliability of typical aircraft mechanisms[D]. Xi’an: Northwestern Polytechnical University, 2016: 13-20(in Chinese).
    [9] 李铭, 谢里阳, 丁丽君. 行星机构的可靠性分析与计算[J]. 航空学报, 2017, 38(8): 421145. doi: 10.7527/S1000-6893.2017.421145

    LI M, XIE L Y, DING L J. Reliability analysis and calculation for planetary mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8): 421145(in Chinese). doi: 10.7527/S1000-6893.2017.421145
    [10] 周长聪, 吉梦瑶, 张屹尚, 等. 多失效模式下起落架机构可靠性及灵敏度研究[J]. 西北工业大学学报, 2021, 39(1): 46-54. doi: 10.3969/j.issn.1000-2758.2021.01.006

    ZHOU C C, JI M Y, ZHANG Y S, et al. Mechanism reliability and sensitivity analysis of landing gear under multiple failure modes[J]. Journal of Northwestern Polytechnical University, 2021, 39(1): 46-54(in Chinese). doi: 10.3969/j.issn.1000-2758.2021.01.006
    [11] 张政, 王攀, 周瀚渊. 含区间分布参数的尾喷管调节机构可靠性分析[J]. 北京航空航天大学学报, 2023, 49(12): 3377-3385.

    ZHANG Z, WANG P, ZHOU H Y. Reliability analysis of nozzle adjustment mechanism with interval distribution parameters[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(12): 3377-3385(in Chinese).
    [12] LI X Y, CHEN W B, KANG R. Performance margin-based reliability analysis for aircraft lock mechanism considering multi-source uncertainties and wear[J]. Reliability Engineering & System Safety, 2021, 205: 107234.
    [13] ZENG C D, QIU Z C, ZHANG F H, et al. Error modelling and motion reliability analysis of a multi-DOF redundant parallel mechanism with hybrid uncertainties[J]. Reliability Engineering & System Safety, 2023, 235: 109259.
    [14] ZHAN Z H, ZHANG X M, JIAN Z C, et al. Error modelling and motion reliability analysis of a planar parallel manipulator with multiple uncertainties[J]. Mechanism and Machine Theory, 2018, 124: 55-72. doi: 10.1016/j.mechmachtheory.2018.02.005
    [15] 王博文, 谢里阳, 樊富友, 等. 考虑共因失效的折叠翼展开机构可靠度分析[J]. 机械工程学报, 2020, 56(5): 161-171. doi: 10.3901/JME.2020.05.161

    WANG B W, XIE L Y, FAN F Y, et al. Reliability analysis of folding wing deployable mechanism considering common cause failure[J]. Journal of Mechanical Engineering, 2020, 56(5): 161-171(in Chinese). doi: 10.3901/JME.2020.05.161
    [16] 刘胜利, 王兴东, 孔建益, 等. 多源不确定性下平面变胞机构运动可靠性分析[J]. 机械工程学报, 2021, 57(17): 64-75. doi: 10.3901/JME.2021.17.064

    LIU S L, WANG X D, KONG J Y, et al. Kinematic reliability analysis of planar metamorphic mechanism with multi-source uncertainties[J]. Journal of Mechanical Engineering, 2021, 57(17): 64-75(in Chinese). doi: 10.3901/JME.2021.17.064
    [17] 李媛媛. 考虑铰链间隙的太阳翼刚柔耦合多体动力学特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 6-8.

    LI Y Y. Study on rigid-flexible coupling multi-body dynamic characteristics of solar wing considering hinge clearance[D]. Harbin: Harbin Institute of Technology, 2019: 6-8(in Chinese).
    [18] 谢里阳, 王正, 周金宇, 等. 机械可靠性基本理论与方法[M]. 2版. 北京: 科学出版社, 2012: 120-128.

    XIE L Y, WANG Z, ZHOU J Y, et al. Basic theory and method of mechanical reliability[M]. 2nd ed. Beijing: Science Press, 2012: 120-128(in Chinese).
    [19] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. doi: 10.11897/SP.J.1016.2017.01229

    ZHOU F Y, JIN L P, DONG J. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251(in Chinese). doi: 10.11897/SP.J.1016.2017.01229
    [20] CHEN Y F, HOU F H, DONG S H, et al. Reliability evaluation of corroded pipeline under combined loadings based on back propagation neural network method[J]. Ocean Engineering, 2022, 262: 111910.
    [21] 吕震宙, 宋述芳, 李璐祎, 等. 结构/机构可靠性设计基础[M]. 西安: 西北工业大学出版社, 2019: 1-4.

    LV Z Z, SONG S F, LI L Y, et al. Fundamentals of structure/mechanism reliability design[M]. Xi’an: Northwestern Polytechnical University Press, 2019: 1-4(in Chinese).
    [22] 常泽明, 李璐祎. 基于NARX和Kriging的时变可靠性分析双层代理模型[J]. 北京航空航天大学学报, 2023, 49(7): 1802-1812.

    CHANG Z M, LI L Y. Double-loop surrogate model for time-dependent reliability analysis based on NARX and Kriging models[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(7): 1802-1812(in Chinese).
    [23] 智鹏鹏, 汪忠来, 李永华, 等. 基于RMQGS-APS-Kriging的主动学习结构可靠性分析方法[J]. 机械工程学报, 2022, 58(16): 420-429.

    ZHI P P, WANG Z L, LI Y H, et al. RMQGS-APS-Kriging-based active learning structural reliability analysis method[J]. Journal of Mechanical Engineering, 2022, 58(16): 420-429(in Chinese).
    [24] ECHARD B, GAYTON N, LEMAIRE M. AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation[J]. Structural Safety, 2011, 33(2): 145-154.
    [25] ZHANG X F, WANG L, SØRENSEN J D. REIF: a novel active-learning function toward adaptive Kriging surrogate models for structural reliability analysis[J]. Reliability Engineering & System Safety, 2019, 185: 440-454.
    [26] SU G S, PENG L F, HU L H. A Gaussian process-based dynamic surrogate model for complex engineering structural reliability analysis[J]. Structural Safety, 2017, 68: 97-109.
    [27] LI M Y, WANG Z Q. Surrogate model uncertainty quantification for reliability-based design optimization[J]. Reliability Engineering & System Safety, 2019, 192: 106432.
    [28] LI L X, CHEN G H, FANG M X, et al. Reliability analysis of structures with multimodal distributions based on direct probability integral method[J]. Reliability Engineering & System Safety, 2021, 215: 107885.
    [29] DUBOURG V, SUDRET B, DEHEEGER F. Metamodel-based importance sampling for structural reliability analysis[J]. Probabilistic Engineering Mechanics, 2013, 33: 47-57. doi: 10.1016/j.probengmech.2013.02.002
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  42
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-24
  • 录用日期:  2023-08-29
  • 网络出版日期:  2023-09-06
  • 整期出版日期:  2025-06-30

目录

    /

    返回文章
    返回
    常见问答