留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温环境轻微过放电对锂电池老化行为的影响

杨小钰 马文斌 谢松

杨小钰,马文斌,谢松. 高温环境轻微过放电对锂电池老化行为的影响[J]. 北京航空航天大学学报,2024,50(12):3903-3911 doi: 10.13700/j.bh.1001-5965.2023.0634
引用本文: 杨小钰,马文斌,谢松. 高温环境轻微过放电对锂电池老化行为的影响[J]. 北京航空航天大学学报,2024,50(12):3903-3911 doi: 10.13700/j.bh.1001-5965.2023.0634
YANG X Y,MA W B,XIE S. Influence of slight over-discharge on aging behavior of lithium-ion batteries in high-temperature environments[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3903-3911 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0634
Citation: YANG X Y,MA W B,XIE S. Influence of slight over-discharge on aging behavior of lithium-ion batteries in high-temperature environments[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3903-3911 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0634

高温环境轻微过放电对锂电池老化行为的影响

doi: 10.13700/j.bh.1001-5965.2023.0634
基金项目: 国家自然科学基金(22379162);四川省科技计划项目(2022YFG0236);民机火灾科学与安全工程四川省重点实验室项目(MZ2022JB02)
详细信息
    通讯作者:

    E-mail:xiesongam@163.com

  • 中图分类号: TM912

Influence of slight over-discharge on aging behavior of lithium-ion batteries in high-temperature environments

Funds: National Natural Science Foundation of China (22379162); Sichuan Science and Technology Program (2022YFG0236); Project of Civil Aircraft Fire Science and Safety Engineering Key Labratory of Sichuan Province (MZ2022JB02)
More Information
  • 摘要:

    近年来全球范围内出现的极端高温天气造成锂离子电池高温环境运行概率显著增加,而运行环境及系统管理引起的电池一致性差异问题使得电池易发生轻微过放电现象,高温环境与过放电现象耦合显著增大电池触发安全事故的风险。为探究高温环境与轻微过放电耦合对锂离子电池老化行为的影响,在60 ℃高温和25 ℃常温环境下对三元锂离子电池进行了轻微过放电实验研究,结果表明:60 ℃和25 ℃轻微过放电循环100次后电池容量衰减率分别为28.46%和2.54%。与常温环境相比,高温环境轻微过放电显著增加了电池的容量衰减;电池电化学分析表明,高温使电池内部锂脱嵌反应受限,活性锂损失增多,动力学性能衰退;电池拆解照片、扫描电镜和元素分析结果表明,高温环境下轻微过放电电池形变严重,电池副反应造成的沉积物增多。因此,高温环境与轻微过放电耦合将加剧正极结构的破坏和内部副反应,导致电池性能下降。研究结果可对锂离子电池材料的开发和电动汽车的安全运行提供实验参考和理论依据。

     

  • 图 1  不同环境温度下正常充放电与轻微过放电电池的充放电曲线

    Figure 1.  Curves of batteries with normal charging and discharging and slight over-discharge at different ambient temperatures

    图 2  不同温度下轻微过放电电池容量保持率、放电中值电压、直流放电内阻及健康状态变化曲线

    Figure 2.  Variation of capacity retention rate, median discharge voltage, internal resistance of DC discharge, and SOH of slightly over-discharged batteries at different temperatures

    图 3  不同环境温度下过放电电池的EIS及等效电路图

    Figure 3.  EIS and equivalent circuit diagram of over-discharged batteries at different ambient temperatures

    图 4  新电池及不同温度下轻微过放电电池放电状态下的dQ/dV、−Q0dV/dQ曲线

    Figure 4.  dQ/dV and −Q0dV/dQ curves of new battery and slightly over-discharged battery at different temperatures

    图 5  不同温度下100次循环的电池拆解图

    Figure 5.  Battery disassembly photos after 100 cycles at different temperatures

    图 6  不同温度下过放电电池的正极和负极的SEM图像

    Figure 6.  SEM images of cathode and anode of over-discharged batteries at different temperatures

    图 7  不同环境下电池正极和负极的XPS结果

    Figure 7.  XPS results of battery cathode and anode in different environments

    表  1  实验所用锂离子电池参数

    Table  1.   Lithium-ion battery parameters in experiment

    参数 规格
    电池类型 软包
    额定容量/mAh 5000
    重量/ g ≤90
    标称电压/V 3.7
    截止电压/V 2.75~4.2
    工作温度最佳范围/℃ 20~45
    下载: 导出CSV

    表  2  负极表面元素的原子质量分数

    Table  2.   Atomic content of elements on anode surface

    不同环境工况 质量分数
    碳元素 氧元素 氟元素
    新电池 0.94 0.030 0.017
    60 ℃过放电 0.87 0.075 0.031
    25 ℃过放电 0.80 0.13 0.048
    下载: 导出CSV
  • [1] WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. doi: 10.1016/j.pecs.2019.03.002
    [2] FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770.
    [3] 谢松, 平现科, 巩译泽. 高高原低气压环境对锂离子电池循环性能的影响[J]. 北京航空航天大学学报, 2022, 48(10): 1883-1888.

    XIE S, PING X K, GONG Y Z. Effect of high altitude and low pressure on cycle performance of lithium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1883-1888 (in Chinese).
    [4] 何俊贤, 谢松, 陈现涛. 气压及加热功率对锂离子电池热安全的影响机制[J]. 北京航空航天大学学报, 2023, 49(11): 3197-3206.

    HE J X, XIE S, CHEN X T. Influence mechanism of air pressure and heating power on thermal safety of lithium-ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(11): 3197-3206 (in Chinese).
    [5] LIN J Y, LIU X H, LI S, et al. A review on recent progress, challenges and perspective of battery thermal management system[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120834. doi: 10.1016/j.ijheatmasstransfer.2020.120834
    [6] DU J Y, OUYANG M G, WU X G, et al. Technological direction prediction for battery electric bus under influence of China’s new subsidy scheme[J]. Journal of Cleaner Production, 2019, 222: 267-279. doi: 10.1016/j.jclepro.2019.02.249
    [7] MIN X Q, XU G J, XIE B, et al. Challenges of prelithiation strategies for next generation high energy lithium-ion batteries[J]. Energy Storage Materials, 2022, 47: 297-318. doi: 10.1016/j.ensm.2022.02.005
    [8] 汽车之家研究院. 2023年中国新能源汽车安全发展报告[EB/OL]. (2024-09-21)[2023-04-04].

    The Autohome Research Institute. In 2023 China's new energy automotive safety development report [EB/OL]. (2024-09-21) [2023-04-04].
    [9] HONG J C, WANG Z P, QU C H, et al. Investigation on overcharge-caused thermal runaway of lithium-ion batteries in real-world electric vehicles[J]. Applied Energy, 2022, 321: 119229. doi: 10.1016/j.apenergy.2022.119229
    [10] ZHANG G X, WEI X Z, CHEN S Q, et al. Unlocking the thermal safety evolution of lithium-ion batteries under shallow over-discharge[J]. Journal of Power Sources, 2022, 521: 230990. doi: 10.1016/j.jpowsour.2022.230990
    [11] BARCELLONA S, COLNAGO S, DOTELLI G, et al. Aging effect on the variation of Li-ion battery resistance as function of temperature and state of charge[J]. Journal of Energy Storage, 2022, 50: 104658. doi: 10.1016/j.est.2022.104658
    [12] OUYANG D X, WENG J W, CHEN M Y, et al. Impact of high-temperature environment on the optimal cycle rate of lithium-ion battery[J]. Journal of Energy Storage, 2020, 28: 101242. doi: 10.1016/j.est.2020.101242
    [13] LIU Y D, LIU Q, LI Z F, et al. Failure study of commercial LiFePO4Cells in over-discharge conditions using electrochemical impedance spectroscopy[J]. Journal of the Electrochemical Society, 2014, 161(4): A620-A632. doi: 10.1149/2.090404jes
    [14] ZHANG L L, MA Y L, CHENG X Q, et al. Capacity fading mechanism during long-term cycling of over-discharged LiCoO2/mesocarbon microbeads battery[J]. Journal of Power Sources, 2015, 293: 1006-1015. doi: 10.1016/j.jpowsour.2015.06.040
    [15] WANG Z P, XU S Q, ZHU X Q, et al. Effects of short-term over-discharge cycling on the performance of commercial 21, 700 lithium-ion cells and the identification of degradation modes[J]. Journal of Energy Storage, 2021, 35: 102257. doi: 10.1016/j.est.2021.102257
    [16] ZHANG G X, WEI X Z, CHEN S Q, et al. Revealing the impact of slight electrical abuse on the thermal safety characteristics for lithium-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(11): 12858-12870. doi: 10.1021/acsaem.1c02537
    [17] LI L, ZHOU X D, JU X Y, et al. Comprehensive analysis on aging behavior and safety performance of LiNixCoyMnzO2/graphite batteries after slight over-discharge cycle[J]. Applied Thermal Engineering, 2023, 225: 120172. doi: 10.1016/j.applthermaleng.2023.120172
    [18] SHIM J. Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature[J]. Journal of Power Sources, 2002, 112(1): 222-230. doi: 10.1016/S0378-7753(02)00363-4
    [19] FENG X N, SUN J, OUYANG M G, et al. Characterization of large format lithium ion battery exposed to extremely high temperature[J]. Journal of Power Sources, 2014, 272: 457-467. doi: 10.1016/j.jpowsour.2014.08.094
    [20] 王嗣慧, 徐中领, 杜锐, 等. 高镍三元锂离子电池高温存储性能衰退机理[J]. 储能科学与技术, 2017, 6(4): 770-775. doi: 10.12028/j.issn.2095-4239.2017.0004

    WANG S H, XU Z L, DU R, et al. Degradation study of Ni-rich NCM batteries operated at high tempertures[J]. Energy Storage Science and Technology, 2017, 6(4): 770-775 (in Chinese). doi: 10.12028/j.issn.2095-4239.2017.0004
    [21] OUYANG D X, WENG J W, CHEN M Y, et al. Experimental analysis on the degradation behavior of overdischarged lithium-ion battery combined with the effect of high-temperature environment[J]. International Journal of Energy Research, 2020, 44(1): 229-241. doi: 10.1002/er.4898
    [22] LIU J L, DUAN Q L, MA M N, et al. Aging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling[J]. Journal of Power Sources, 2020, 445: 227263. doi: 10.1016/j.jpowsour.2019.227263
    [23] WANG X Y, WEI X Z, ZHU J G, et al. A review of modeling, acquisition, and application of lithium-ion battery impedance for onboard battery management[J]. eTransportation, 2021, 7: 100093. doi: 10.1016/j.etran.2020.100093
    [24] SHEN W, WANG N, ZHANG J, et al. Heat generation and degradation mechanism of lithium-ion batteries during high-temperature aging[J]. ACS Omega, 2022, 7(49): 44733-44742. doi: 10.1021/acsomega.2c04093
    [25] 章胜桃. 高温条件下锂离子电池退化规律与失效机理研究[D]. 哈尔滨: 哈尔滨理工大学, 2023: 16-20.

    ZHANG S T. Study on degradation law and failure mechanism of lithium ion battery at high temperature[D]. Harbin: Harbin University of Science and Technology, 2023: 16-20(in Chinese).
    [26] FLY A, CHEN R. Rate dependency of incremental capacity analysis (dQ/dV) as a diagnostic tool for lithium-ion batteries[J]. Journal of Energy Storage, 2020, 29: 101329. doi: 10.1016/j.est.2020.101329
    [27] LIU S, XIONG L, HE C. Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode[J]. Journal of Power Sources, 2014, 261: 285-291. doi: 10.1016/j.jpowsour.2014.03.083
    [28] ANDO K, MATSUDA T, IMAMURA D. Degradation diagnosis of lithium-ion batteries with a LiNi0.5Co0.2Mn0.3O2 and LiMn2O4 blended cathode using dV/dQ curve analysis[J]. Journal of Power Sources, 2018, 390: 278-285. doi: 10.1016/j.jpowsour.2018.04.043
    [29] FANG S Y, JACKSON D, DREIBELBIS M L, et al. Anode-originated SEI migration contributes to formation of cathode-electrolyte interphase layer[J]. Journal of Power Sources, 2018, 373: 184-192. doi: 10.1016/j.jpowsour.2017.09.050
    [30] DU Y T, SHIRONITA S, HOSONO E, et al. Differences in the deterioration behaviors of fast-charged lithium-ion batteries at high and low temperatures[J]. Journal of Power Sources, 2023, 556: 232513. doi: 10.1016/j.jpowsour.2022.232513
    [31] ZHANG G X, WEI X Z, CHEN S Q, et al. Research on the impact of high-temperature aging on the thermal safety of lithium-ion batteries[J]. Journal of Energy Chemistry, 2023, 87: 378-389. doi: 10.1016/j.jechem.2023.08.040
    [32] XIE S, PING X K, YANG X Y, et al. Influence of atmospheric pressure on the aging mechanism of LiCoO2/graphite cells[J]. Electrochimica Acta, 2024, 474: 143541. doi: 10.1016/j.electacta.2023.143541
    [33] REN D S, HSU H, LI R H, et al. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries[J]. eTransportation, 2019, 2: 100034. doi: 10.1016/j.etran.2019.100034
    [34] 占佳琦, 邢丽丹. 锂离子电池正极材料过渡金属离子溶出的危害及抑制研究[J]. 材料研究与应用, 2023, 17(5): 902-911.

    ZHAN J Q, XING L D. Study on the detriment and inhibition of the dissolution of transition metal ions in cathode materials of lithium-ion batteries[J]. Materials Research and Application, 2023, 17(5): 902-911 (in Chinese).
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  64
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-04
  • 录用日期:  2024-03-29
  • 网络出版日期:  2024-05-20
  • 整期出版日期:  2024-12-31

目录

    /

    返回文章
    返回
    常见问答