留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于内聚力模型的透波罩黏接强度性能研究

侯保江 王姣 邢誉峰 张飞 李焱喜

侯保江,王姣,邢誉峰,等. 基于内聚力模型的透波罩黏接强度性能研究[J]. 北京航空航天大学学报,2025,51(6):1916-1925 doi: 10.13700/j.bh.1001-5965.2023.0790
引用本文: 侯保江,王姣,邢誉峰,等. 基于内聚力模型的透波罩黏接强度性能研究[J]. 北京航空航天大学学报,2025,51(6):1916-1925 doi: 10.13700/j.bh.1001-5965.2023.0790
HOU B J,WANG J,XING Y F,et al. Performance study on bonding strength of radome based on cohesive zone model[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1916-1925 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0790
Citation: HOU B J,WANG J,XING Y F,et al. Performance study on bonding strength of radome based on cohesive zone model[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1916-1925 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0790

基于内聚力模型的透波罩黏接强度性能研究

doi: 10.13700/j.bh.1001-5965.2023.0790
详细信息
    通讯作者:

    E-mail:153327058@qq.com

  • 中图分类号: V221+.3;TB553

Performance study on bonding strength of radome based on cohesive zone model

More Information
  • 摘要:

    透波罩与飞行器本体往往通过胶黏+辅助连接的方式进行连接,在实际工程应用中,通常将线弹性本构作为胶黏剂的本构模型进行分析,该方法难以对相关黏接结构的力学行为进行准确模拟。基于此,采取常用的双线性内聚力本构模型,通过胶黏剂实际性能的测试结果对本构模型进行校正,采用平板模拟实际黏接结构的性能试验进一步验证复杂受力环境下模型的有效性,并将验证后的本构模型用于分析实际整机级透波罩的黏接强度,并与实际试验结果进行对比,验证双线性内聚力本构模型的计算精度,为类似结构黏接强度的准确预测提供有效途径。

     

  • 图 1  双线型模型牵引力-位移曲线

    Figure 1.  Traction-displacement curve of bilinear model

    图 2  单一型断裂双线性本构关系[31]

    Figure 2.  Bilinear constitutive relation of single-mode fracture[31]

    图 3  胶层性能测试有限元模型

    Figure 3.  Finite element model of performance test for adhesive layer

    图 4  平板级连接有限元模型

    Figure 4.  Finite element model at level of surface plate

    图 5  胶接状态预测结果

    Figure 5.  Predicted results of adhesive bonding state

    图 6  胶接+销钉状态预测结果

    Figure 6.  Predicted results of adhesive bonding + pin state

    图 7  胶接状态试验载荷曲线

    Figure 7.  Curves of test load of adhesive bonding state

    图 8  胶接+销钉状态试验载荷曲线

    Figure 8.  Curves of test load of adhesive bonding + pin state

    图 9  透波罩连接结构示意图

    Figure 9.  Connection structure for radome

    图 10  透波罩有限元模型局部结构

    Figure 10.  Local structure of finite element model for radome

    图 11  静力载荷工况下变形情况

    Figure 11.  Deformation under static load conditions

    图 12  静力载荷工况下罩体损伤分布

    Figure 12.  Damage distribution of radome under static load

    图 13  力热耦合工况下胶层失效力学性能

    Figure 13.  Adhesive failure and mechanical property under thermo-mechanical coupling

    图 14  力热耦合工况下罩体损伤分布

    Figure 14.  Damage distribution of radome under thermo-mechanical coupling

    表  1  Cohesive单元的模型参数

    Table  1.   Model parameters of Cohesive elements

    温度/°C 弹性模量/
    GPa
    GⅠ C/(J·m−2 GⅡ C/(J·m−2
    室温 3.2 78.42 148.99
    170 2.6 51.53 91.40
    250 1.1 16.39 30.17
    下载: 导出CSV

    表  2  胶层力学性能参数

    Table  2.   Mechanical parameters of adhesive layer

    加载
    方式
    强度测试值/MPa 仿真结果/
    MPa
    误差/%
    1# 2# 3# 4# 5# 6# 平均值
    拉剪 15.3 17 20.5 15 14.8 14.4 16.17 17.1 5.75
    压剪 74.3 80.9 78.3 66.7 70.2 75.7 74.35 71.08 −4.4
    拉离 66.9 51.4 56.4 47.9 36.9 68.5 56.42 53.37 −5.41
    下载: 导出CSV

    表  3  极限载荷试验结果与计算结果对比

    Table  3.   Comparison between experimental and calculated results under ultimate load

    连接状态 温度条件 载荷/kN 误差/%
    计算值 试验值
    胶接 室4温 65.8 68 −3.2
    胶接+销钉 室温 76.1 82 −7.2
    胶接 170 ℃ 28.6 30.4 −5.9
    胶接+销钉 170 ℃ 47.7 50 −4.6
    胶接 250 ℃ 1.06 1 6
    胶接+销钉 250 ℃ 22.5 23.3 −3.4
    下载: 导出CSV
  • [1] 彭望泽. 防空导弹天线罩[M]. 北京: 宇航出版社, 1993: 2-3.

    PENG W Z. Air defense missile radome[M]. Beijing: Aerospace Publishing House, 1993: 2-3(in Chinese).
    [2] 李富志. 我国胶粘剂应用的发展趋势[J]. 粘接, 2011, 32(7): 22-25.

    LI F Z. The development trend of adhesive application in China[J]. Adhesion, 2011, 32(7): 22-25(in Chinese).
    [3] CAMANHO P P, MATTHEWS F L. Delamination onset prediction in mechanically fastened joints in composite laminates[J]. Journal of Composite Materials, 1999, 33(10): 906-927. doi: 10.1177/002199839903301002
    [4] DAVILA C G, JOHNSON E R. Analysis of delamination initiation in postbuckled dropped-ply laminates[J]. AIAA Journal, 1993, 31(4): 721-727. doi: 10.2514/3.49019
    [5] SHENG L. Quasi-impact damage initiation and growth of thick-section and toughened composite materials[J]. International Journal of Solids and Structures, 1994, 31(22): 3079-3098. doi: 10.1016/0020-7683(94)90042-6
    [6] ZOU Z, REID S R, LI S, et al. Modelling interlaminar and intralaminar damage in filament-wound pipes under quasi-static indentation[J]. Journal of Composite Materials, 2002, 36(4): 477-499.
    [7] RYBICKI E F, KANNINEN M F. A finite element calculation of stress intensity factors by a modified crack closure integral[J]. Engineering Fracture Mechanics, 1977, 9(4): 931-938.
    [8] RAJU I S. Calculation of strain-energy release rates with higher order and singular finite elements[J]. Engineering Fracture Mechanics, 1987, 28(3): 251-274.
    [9] ZOU Z, REID S R, SODEN P D, et al. Mode separation of energy release rate for delamination in composite laminates using sublaminates[J]. International Journal of Solids and Structures, 2001, 38(15): 2597-2613. doi: 10.1016/S0020-7683(00)00172-4
    [10] KRUEGER R. The virtual crack closure technique: history, approach and applications: NASA/CR-2002-211628[R]. Washington, D. C.: NASA, 2002.
    [11] TURON A, DÁVILA C G, CAMANHO P P, et al. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models[J]. Engineering Fracture Mechanics, 2007, 74(10): 1665-1682. doi: 10.1016/j.engfracmech.2006.08.025
    [12] 陈兴. 基于内聚力模型的不锈钢钎焊接头裂纹扩展研究[D]. 上海: 华东理工大学, 2014: 8-13.

    CHEN X. Study on crack propagation of stainless steel brazed joint based on cohesion model[D]. Shanghai: East China University of Science and Technology, 2014: 8-13(in Chinese).
    [13] TURON A, CAMANHO P P, COSTA J, et al. A damage model for the simulation of delamination in advanced composites under variable-mode loading[J]. Mechanics of Materials, 2006, 38(11): 1072-1089. doi: 10.1016/j.mechmat.2005.10.003
    [14] DAVILA C G, CAMANHO P P, TURON A. Cohesive elements for shells: NASA/TP-2007-214869[R]. Washington, D. C.: NASA , 2007.
    [15] 周储伟, 杨卫, 方岱宁. 内聚力界面单元与复合材料的界面损伤分析[J]. 力学学报, 1999, 31(3): 372-377. doi: 10.3321/j.issn:0459-1879.1999.03.014

    ZHOU C W, YANG W, FANG D N. Cohesive interface element and interfacial damage analysis of composites[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(3): 372-377(in Chinese). doi: 10.3321/j.issn:0459-1879.1999.03.014
    [16] MI U, CRISFIELD M A, DAVIES G A O. Progressive delamination using interface elements[J]. Journal of Composite Materials, 1998, 32(14): 1246-1272. doi: 10.1177/002199839803201401
    [17] NEEDLEMAN A. A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics, 1987, 54(3): 525. doi: 10.1115/1.3173064
    [18] NEEDLEMAN A. An analysis of tensile decohesion along an interface[J]. Journal of the Mechanics and Physics of Solids, 1990, 38(3): 289-324. doi: 10.1016/0022-5096(90)90001-K
    [19] XU X P, NEEDLEMAN A. Numerical simulations of fast crack growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397-1434. doi: 10.1016/0022-5096(94)90003-5
    [20] 徐建新, 宋依良, 郭巧荣. 一种考虑脆性断裂的三线性内聚力模型[J]. 航空科学技术, 2023, 34(3): 97-103.

    XU J X, SONG Y L, GUO Q R. A trilinear cohesive model considering brittle fracture[J]. Aeronautical Science & Technology, 2023, 34(3): 97-103(in Chinese).
    [21] 饶玉文. 复合材料分层内聚力模型参数反演研究[D]. 南京: 南京航空航天大学, 2020: 10-12.

    RAO Y W. Study on parameter inversion of layered cohesion model of composite materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 10-12(in Chinese).
    [22] CAMANHO P P, DAVILA C G, DE MOURA M F. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials, 2003, 37(16): 1415-1438.
    [23] 何振鹏, 邓殿凯, 刘国峰, 等. 基于内聚力模型的复合材料裂纹扩展研究[J]. 复合材料科学与工程, 2022(1): 5-12.

    HE Z P, DENG D K, LIU G F, et al. Research on crack propagation of composite materials based on cohesive zone model[J]. Composites Science and Engineering, 2022(1): 5-12(in Chinese).
    [24] SCHELLEKENS J C J, DE BORST R. A non-linear finite element approach for the analysis of mode-I free edge delamination in composites[J]. International Journal of Solids and Structures, 1993, 30(9): 1239-1253. doi: 10.1016/0020-7683(93)90014-X
    [25] YUAN H, LI X. Effects of the cohesive law on ductile crack propagation simulation by using cohesive zone models[J]. Engineering Fracture Mechanics, 2014, 126: 1-11. doi: 10.1016/j.engfracmech.2014.04.019
    [26] ZHAO L B, GONG Y, ZHANG J Y, et al. Simulation of delamination growth in multidirectional laminates under mode Ⅰ and mixed mode Ⅰ/Ⅱ loadings using cohesive elements[J]. Composite Structures, 2014, 116: 509-522. doi: 10.1016/j.compstruct.2014.05.042
    [27] GUO X, ZHANG W J, ZHU L L, et al. Mesh dependence of transverse cracking in laminated metals with nanograined interface layers[J]. Engineering Fracture Mechanics, 2013, 105: 211-220. doi: 10.1016/j.engfracmech.2013.04.005
    [28] TURON A, CAMANHO P P, COSTA J, et al. Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: definition of interlaminar strengths and elastic stiffness[J]. Composite Structures, 2010, 92(8): 1857-1864. doi: 10.1016/j.compstruct.2010.01.012
    [29] SARRADO C, TURON A, RENART J, et al. Assessment of energy dissipation during mixed-mode delamination growth using cohesive zone models[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(11): 2128-2136. doi: 10.1016/j.compositesa.2012.07.009
    [30] TURON A, GONZÁLEZ E V, SARRADO C, et al. Accurate simulation of delamination under mixed-mode loading using a cohesive model with a mode-dependent penalty stiffness[J]. Composite Structures, 2018, 184: 506-511. doi: 10.1016/j.compstruct.2017.10.017
    [31] 叶强. 层合复合材料的粘聚区模型及其应用研究[D]. 南京: 南京航空航天大学, 2012: 14-16.

    YE Q. Study on cohesion zone model of laminated composites and its application[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 14-16(in Chinese).
    [32] WU E M, REUTER R C. Crack extension in fiberglass reinforced plastics: 1967-0570[R]. Urbana: University of Illinois, 1965.
    [33] BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology, 1996, 56(4): 439-449. doi: 10.1016/0266-3538(96)00005-X
    [34] YE L. Role of matrix resin in delamination onset and growth in composite laminates[J]. Composites Science and Technology, 1988, 33(4): 257-277. doi: 10.1016/0266-3538(88)90043-7
    [35] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 胶粘剂 拉伸剪切强度的测定(刚性材料对刚性材料): GB/T 7124—2008[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, National Standardization Administration. Adhesives-Determination of tensile lap-shear strength of rigid-to-rigid bonded assemblies: GB/T 7124—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [36] 中国航天工业总公司. 胶粘剂压缩剪切强度试验方法: QJ 1634A—96[S]. 北京: 中国标准出版社, 1996.

    China Aerospace Industry Corporation. Test method for compressive shear strength of adhesives: QJ 1634A—96[S]. Beijing: Standards Press of China, 1996(in Chinese).
    [37] 国防科学技术工业委员会. 胶粘剂高温拉伸强度试验方法(金属对金属): GJB 445—1988[S]. 北京: 中国标准出版社, 1988.

    Commission of Science, Technology and Industry for National Defense. Test method for tensile of adhesives at high temperature (metal to metal):GJB 445—1988[S]. Beijing: Standards Press of China, 1988(in Chinese).
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  46
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-04
  • 录用日期:  2024-03-11
  • 网络出版日期:  2024-04-15
  • 整期出版日期:  2025-06-30

目录

    /

    返回文章
    返回
    常见问答