-
摘要:
为提高星载准绝对式光电编码器的抗油污能力,提出多参考点绝对角位移识别和多读数头数据融合方法。介绍星载准绝对式光电编码器的组成和处理电路设计;提出多参考点绝对角位移的识别方法,防止因油污造成的绝对角位移误识别,并采用多读数头数据融合的方法,判断并消除错误的读数头测量数据;通过角位移曲线和角速度曲线对比实验,验证所提方法的有效性,并使用自准直平行光管和23面体检测精度。实验结果表明:所提方法能够有效的解决圆光栅被污染带引起的角位移错误问题,确保角位移正确可靠;经检验角位移误差最大值为4.6",最小值为−0.6",峰峰值为5.2",均方差为4.3"。满足星载准绝对式光电编码器抗污能力和精度要求,并已成功在工程中应用,效果良好。所提方法对提高星载准绝对式光电编码器抗油污能力,有实用价值。
Abstract:In order to improve the pollutant resistance of satellite-borne absolute-to-be optical encoder, a method based on multiple references and probes is proposed. First, the composition and circuit design of the satellite-borne absolute-to-be optical encoder was introduced. Second, the data from several probes was combined and references were utilized to differentiate absolute angle shift. This solved the problem which is caused by contaminated circle grating. At last, angular curve and velocity were employed to prove this. The accuracy is tested using autocollimation and a 23-surface polyhedron. The outcome demonstrates its effectiveness. The biggest error is 4.6", the smallest error is −0.6", the pink is 5.2", and the RSME is 4.3". This method could meet the requirements and has been successfully applied in engineering. The proposed method has practical value for improving the oil pollution resistance of spaceborne quasi-absolute optical encoders.
-
表 1 星载准绝对式光电编码器精度检测结果
Table 1. Accuracy test results of satellite-borne absolute-to-be optical encoder’s
测量位置 θ′−θ /(") 理论值/(") 修正值/(") 最终精度/(") 1 0 0 0 0 2 10.5 7.8 −0.5 3.2 3 18.0 15.7 −0.3 2.6 4 22.6 23.5 −0.3 −0.6 5 32.5 31.3 −0.2 1.4 6 40.0 39.1 −0.5 1.4 7 48.8 47.0 0.2 1.7 8 57.5 54.8 0.7 2.0 9 4.2 2.6 0.4 1.2 10 11.7 10.4 0.4 0.8 11 18.9 18.3 −0.2 0.8 12 24.6 26.1 −0.7 −0.8 13 35.3 33.9 −0.3 1.6 14 44.6 41.7 0.1 2.7 15 51.7 49.6 −0.9 3.1 16 61.0 57.4 −0.2 3.8 17 7.6 5.2 −0.8 3.2 18 14.9 13.0 −0.4 2.3 19 22.8 20.9 −0.7 2.7 20 32.2 28.7 −1.1 4.6 21 39.1 36.5 0.1 2.4 22 47.0 44.3 −0.2 2.9 23 52.3 52.2 0.3 −0.2 -
[1] 董全睿, 陈涛, 高世杰, 等. 星载激光通信技术研究进展[J]. 中国光学, 2019, 12(6): 1260-1270. doi: 10.3788/co.20191206.1260DONG Q R, CHEN T, GAO S J, et al. Progress of research on satellite-borne laser communication technology[J]. Chinese Optics, 2019, 12(6): 1260-1270(in Chinese). doi: 10.3788/co.20191206.1260 [2] 秦涛, 郭骏立, 张美丽, 等. 星载二维转台结构设计及刚度分析[J]. 红外与激光工程, 2022, 51(5): 300-308.QIN T, GUO J L, ZHANG M L, et al. Structure design and stiffness analysis of spaceborne two-dimensional turntable[J]. Infrared and Laser Engineering, 2022, 51(5): 300-308(in Chinese). [3] 韩旭东, 徐新行, 刘长顺, 等. 用于星载激光通信终端的绝对式光电角度编码器[J]. 光学 精密工程, 2016, 24(10): 2424-2431. doi: 10.3788/OPE.20162410.2424HAN X D, XU X H, LIU C S, et al. Absolute optical angle encoder used for laser communication terminal on satellite platform[J]. Optics and Precision Engineering, 2016, 24(10): 2424-2431(in Chinese). doi: 10.3788/OPE.20162410.2424 [4] 叶盛祥. 光电位移精密测量技术[M]. 成都: 四川科学技术出版社, 2003.YE S X. Precise photoelectric displacement measurement technology [M]. Chengdu: Science and Technology Press, 2003 (in Chinese). [5] 刘长顺, 王显军, 韩旭东, 等. 八矩阵超小型绝对式光电编码器[J]. 光学 精密工程, 2010, 18(2): 326-333.LIU C S, WANG X J, HAN X D, et al. Ultra miniature absolute optical encoders based on eight-matrix coding[J]. Optics and Precision Engineering, 2010, 18(2): 326-333(in Chinese). [6] 王亚洲, 于海, 易进, 等. 图像式角位移测量的光栅偏心度监测系统[J]. 光学 精密工程, 2020, 28(5): 1038-1045.WANG Y Z, YU H, YI J, et al. Grating eccentricity monitoring system for image-based angular displacement measurement[J]. Optics and Precision Engineering, 2020, 28(5): 1038-1045(in Chinese). [7] YU H, WAN Q H, ZHAO C H, et al. Error compensation for low-density circular gratings based on linear image-type angular displacement measurements[J]. IEEE Transactions on Industrial Electronics, 2022, 69(12): 13736-13743. doi: 10.1109/TIE.2021.3139240 [8] 刘永坤, 丁红昌, 向阳, 等. 利用反射式圆光栅的振镜转角测量[J]. 中国光学, 2021, 14(3): 643-651. doi: 10.37188/CO.2020-0179LIU Y K, DING H C, XIANG Y, et al. Rotational angle measurement of galvanometer using reflective circular grating[J]. Chinese Optics, 2021, 14(3): 643-651(in Chinese). doi: 10.37188/CO.2020-0179 [9] 韩庆阳, 陈赟, 张红胜, 等. 耐高温增量式光电编码器的研制[J]. 光学 精密工程, 2019, 27(7): 1458-1464. doi: 10.3788/OPE.20192707.1458HAN Q Y, CHEN Y, ZHANG H S, et al. Development of high-temperature resistant incremental encoder[J]. Optics and Precision Engineering, 2019, 27(7): 1458-1464(in Chinese). doi: 10.3788/OPE.20192707.1458 [10] 裘祖荣, 周磊, 薛浩, 等. 精密减速器检验仪测角误差补偿[J]. 光学 精密工程, 2021, 29(11): 2662-2631.QIU Z R, ZHOU L, XUE H, et al. Angle error compensation of precision reducer tester[J]. Optics and Precision Engineering, 2021, 29(11): 2662-2631(in Chinese). [11] 于连栋, 鲍文慧, 赵会宁, 等. 新型圆光栅测角误差补偿方法及其应用[J]. 光学 精密工程, 2019, 27(8): 1719-1726. doi: 10.3788/OPE.20192708.1719YU L D, BAO W H, ZHAO H N, et al. Application and novel angle measurement error compensation method of circular gratings[J]. Optics and Precision Engineering, 2019, 27(8): 1719-1726(in Chinese). doi: 10.3788/OPE.20192708.1719 [12] YU H, WAN Q H, ZHAO C H, et al. Anti-stain algorithm of angular displacement based on a single image sensor[J]. Applied Optics, 2020, 59(7): 1985-1990. doi: 10.1364/AO.383765 [13] 张文颖, 劳达宝, 周维虎, 等. 基于多头读数布局的圆光栅自校准方法研究[J]. 光学学报, 2018, 38(8): 0812001.ZHANG W Y, LAO D B, ZHOU W H, et al. Self-calibration method based on multi-head reading layout[J]. Acta Optica Sinica, 2018, 38(8): 0812001(in Chinese). [14] 杨雪, 梁煜, 张为, 等. 应用于反射式编码器的光电集成芯片设计[J]. 光学 精密工程, 2023, 31(8): 1136-1149. doi: 10.37188/OPE.20233108.1136YANG X, LIANG Y, ZHANG W, et al. Design of an optoelectronic integrated chip for reflective encoder application[J]. Optics and Precision Engineering, 2023, 31(8): 1136-1149(in Chinese). doi: 10.37188/OPE.20233108.1136 [15] 殷景志, 余芝帅, 彭火山, 等. 小型伪随机绝对式光电编码器芯片[J]. 光学 精密工程, 2016, 24(10): 169-174.YIN J Z, YU Z S, PENG H S, et al. Applied of pseudo-rondom code in miniature absolute encoder chip[J]. Optics and Precision Engineering, 2016, 24(10): 169-174(in Chinese). -