-
摘要:
近日,低空产业联盟对外发布《低空智能网联体系参考架构(2024版)》报告,该报告作为框架性的文件,旨在用最精确简短的内容体现低空智能网联体系的关键构成,但缺乏对体系背后隐含的科学方法、理论基础、实现途径等内容的详细描述。基于此,围绕该报告的内容,对低空智能网联体系发展现状、架构设计思路、关键技术等进行了全面的阐述,旨在对报告涉及的内容做进一步的分析和解读,为后续围绕低空智能网联体系的开发和建设工作提供科学的理论参考。
-
关键词:
- 低空智能网联体系运行概念 /
- 低空智能网联体系架构设计 /
- 低空智能网联应用服务系统 /
- 低空智能网联数据与服务支撑网络 /
- 低空智能网联机载终端与基础设施 /
- 低空智能网联体系关键技术
Abstract:Recently, the Low-Altitude Industry Alliance released the
Reference Architecture of the Low-Altitude Intelligent Networked System (2024 Edition) report, which outlines the basic content of the developmental evolution stages, components, and system framework of the low-altitude intelligent networked system. This document provides a reliable reference and foundation for the development of the low-altitude intelligent networked system. However, as a framework-based report, the report focuses on presenting the key components of the low-altitude intelligent networked system in the most concise and precise manner, lacking detailed descriptions of the underlying scientific methods, theoretical foundations, and implementation approaches. This paper comprehensively elaborates on the current state of development, design concepts, system logic, and key technologies of the low-altitude intelligent networked system based on the report. It aims to further analyze and interpret the content of the report, providing a scientific theoretical reference for the subsequent development and construction of the low-altitude intelligent networked system.-
Key words:
- concept of operation for low-altitude intelligent interconnected system /
- design of low-altitude intelligent interconnected system architecture /
- low-altitude intelligent interconnected application service system /
- low-altitude intelligent interconnected data and service support network /
- low-altitude intelligent interconnected airborne terminals and infrastructure /
- key technologies for low-altitude intelligent interconnected system
-
表 1 低空智能网联体系应用服务关键技术
Table 1. Key technologies of the application service for the low-altitude intelligent networked system
应用服务系统 关键技术 业务能力[43-48] 运营管理系统 数据驱动的低空智能航行管理技术 通过请求和处理飞行计划、气象信息和容流信息等,实现无人机智能飞行计划生成、航迹动态优化和多无人机协同管理 低空交通管理
和服务系统低空数字化空域管理技术 基于低空空域数字化模型,支持航行方案的仿真验证、空域资源和运行态势的可视化,为实时决策提供数据支撑 空域容流自适应匹配技术 根据实时飞行需求和空域负载动态调整容量,优化流量分配,避免区域性的空域拥堵和冲突风险 低空监管系统 实时安全风险评估 构建低空运行风险动静态指标体系,实时评估当前空域安全风险;在突发事件中快速生成风险报告,辅助应急决策 身份识别与认证 系统支持无人机提供身份识别和权限认证、飞行活动记录溯源、防止非法设备入侵等业务,保障空域内低空飞行器的合法运行 表 2 SWIM关键技术
Table 2. Key technologies in SWIM
关键技术 功能描述 指标参考 数据标准化 统一航班信息、飞行情报、
气象信息等异构数据接口≥7种异构数据 信息交换模型构建 标准化数据交换模型
(如AIXM、FIXM、WXXM等)数据吞吐量 ≥
10 Gbit/s面向服务架构
设计提供态势感知、运行控制、
飞行计划更新等服务支持服务数据延迟≤
100 ms注:假设一个典型的全国性 SWIM 系统服务约 5 000 个终端(机场、航空公司、空管站等),每个终端每秒传输数据 200 KB,吞吐量可达 5 000 × 200 KB/s ≈ 8 Gbit/s。 表 3 DRF关键技术梳理
Table 3. Analysis of key technologies in DRF
关键技术 功能描述 指标参考 数据融合 动态数据融合与推理生成 终端数量 ≥ 10 000;
数据吞吐量 ≥
10 Gbit/s智能算法 支持实时态势感知与
任务规划服务算法响应时间 ≤ 200 ms 分布式服务架构 动态生成分发任务相关的
决策支持服务动态服务生成时间≤1 s 注:假设 10 000 架无人机,每秒上报 100 KB 数据,同时接受推理结果,吞吐量可达 10 000 × 100 KB/s ≈ 8 Gbit/s。 表 4 数据与服务支撑网络所需关键技术
Table 4. Key technologies required for the data and service support network
关键技术 功能描述 指标参考 数据标准化 接入机载终端与地面基础设施
数据,统一标准化数据接口≥15种异构数据 信息融合与
建模基于接入的融合数据扩展建模,
实现多源数据的智能决策
模型构建单次建模时间 ≤ 10 s;
融合误差 ≤ 1%数据交换 实现城市级规模的低空数据
可靠传输与动态交换数据传输速率 ≥
10 Gbit/s;
延迟 ≤ 50 ms服务能力生成 生成和分发飞行态势感知、
冲突检测、
路径优化等业务服务所需的
底层数据和决策信息。支持终端 ≥ 10 000;
动态服务生成
时间 ≤ 1 s表 5 低空智能网联体系通信能力需求
Table 5. Communication capability requirements of the low-altitude intelligent networked system
能力需求 具体含义 传输时延 从发送端发送数据到接收端接收到数据所需的时间间隔 传输速率 在单位时间内可以传输的数据量,通常以bit/s为单位 覆盖率 通信网络能够有效提供服务的区域占总区域的比例 连续性 通信服务在一段时间内不间断的能力 完好性 在未检验出错误情况下,通信处理能够在一个通信处理时间内完成的概率 表 6 通信可选技术方案
Table 6. Optional communication technology solutions
技术手段 需要解决问题/缺点 指标参考 5G蜂窝通信 需要解决航空优先级、
天线指向、高密度服务
拥堵相关问题带宽≥10 Gbit/s
空口时延≤1 msLEO卫星通信 可能具有双重功能
(通信和导航增强)通信延迟≤100 ms
上行速率≥10 Mbit/s低空通信专网和
数据链需要部署多基站或
中继设备数据链:
传输距离≥40 km
传输速率≥300 Kbit/s
专网:覆盖高度≥1 km
传输速率
100~1.024×105 Kbit/s
(不同技术路径有差异)北斗短报文通信 引入数据压缩技术,减少单次通信的数据量 单条报文1 000Byte
(北斗三)VDL模式2 成本、容量和延迟方面
存在问题通信速率31.5 Kbit/s VDL模式3 适当的带宽 通信速率31.5 Kbit/s 自组网电台 需解决跳转增加的
网络传输延迟峰值速率≥10 Mbit/s
单台距离≥30 km
组网能力≥64节点
跳数≥10
(不同产品差异较大)激光通信 成熟度不足 WiFi/蓝牙 短距离通信需要太多的地面站点以确保可行性;易受发射器干扰;适用低速合作目标 最大传输速率:
9.6 Gbit/s
24 Mbit/s(蓝牙)
传输距离:
100 m(WiFi)、
10 m(蓝牙)表 7 低空智能网联体系导航能力需求
Table 7. Navigation capability requirements of the low-altitude intelligent networked system
能力需求 具体含义 定位精度 系统测量或计算目标位置的准确度 更新频率 系统在覆盖区域内,2次位置信息更新的时间间隔 可用性 在指定的覆盖区域内,多技术手段融合导航系统能够提供有效服务时间的百分比 连续性 导航系统在覆盖区域一定时间范围内持续提供位置信息的能力 完好性 系统出现故障并超出误差限制时,在规定的时间阈值内向用户发出告警的能力 表 8 导航可选技术方案
Table 8. Optional navigation technology solutions
技术手段 需要解决问题/缺点 指标参考 惯性导航 漂移误差累积;高精度成本高 角速度精度 ≤0.01 (°)/s;
加速度精度 ≤0.01 m/s²;
累计位置误差 ≤
0.1%×距离视觉导航 需要与环境地图进行匹配(如SLAM) 导航精度 ≤ 0.2 m;
特征点匹配成功率 ≥95%;
算法延迟 ≤50 ms卫星导航及
增强需与RTK、增强系统、完好性监测共同适用;多径效应;抗干扰 定位精度:≤1 m(普通),
≤0.1 m(RTK增强)
信号丢失恢复时间 ≤5 s高度计 城市环境中的气压高度计可能会有高达
152.4 m的高度误差高度测量精度 ≤0.1 m
响应时间 ≤10 msLiDAR 高分辨率LiDAR设备成本较高 探测距离 ≤200 m
探测精度 ≤0.01 m
点云刷新率 ≥10 Hz注:不同制造商设备数据存在差异。 表 9 低空智能网联体系监视能力需求
Table 9. Surveillance capability requirements of the low-altitude intelligent networked system
能力需求 具体含义 监视识别率 系统发现并准确识别监视目标的概率 监视信息更新频率 系统在时间范围内更新监视信息的次数 监视告警时延 从事件发生到监视系统发出告警的时间间隔 误警率 系统发出错误告警的概率 虚警率 系统错误的报告监视目标的概率 漏警率 系统未能发出应有告警的概率 完整率 系统在未检验出错误情况下,能够在一个监视周期内完成监视任务的概率 表 10 监视可选技术方案
Table 10. Optional surveillance technology solutions
目标类型 技术手段 需要解决问题/缺点 指标参考 合作目标 远程识别 强制要求轻小微无人机通过远程识别报送信息,最低性能要求(试行)已发布 探测距离
1~2 km
频率 2.4 GHz/
5.8 GHz广播式自动相关监视 ADS-B设备可用于中大型无人机;解决
1 090 MHz频段
拥堵问题探测距离≥200 km
(有人机)
监测识别无人机≥
100 架
处理速度≥
500报文/s非合作目标 低空监视
雷达减少虚假目标和误警;提高对低反射目标
(如微型无人机)的
探测能力探测范围达到20 km
探测高度1 000 m
跟踪目标数量≥
500架
识别时间≤10 s5G-A
通感一体目前测试验证
不充分;昂贵面向低空场景单站覆盖距离≥ 1 200 m
感知高度≥300 m光电/红外
探测作用距离短,
识别精度受限跟踪距离≥2 km
跟踪误差≤0.02°
识别距离≥1 km频谱探测 高密度电磁环境中,容易受到干扰,信号分离困难;对静默无人机
探测能力有限探测距离≥10 km;
覆盖频段0.02~
8 GHz;测向精度≤3°;目标识别优于20 mm表 11 5G-A技术指标发展
Table 11. Development of 5G-A technical indicators
性能参数 5G-A级别 5G级别 下行速率 10 Gbit/s 1 Gbit/s 上行速率 1 Gbit/s 200 Mbit/s 时延 5~10 ms 20 ms 位置精度 厘米级 米级 感知能力 距离、速度 现存问题 存在同频干扰,时间同步误差
不能满足精度要求,网络容量
增长限制无法针对低空场景
提供网络支持 -
[1] 低空产业联盟. 低空智能网联体系参考架构(2024版)[R/OL]. (2024-11-11)[2025-01-23]. https://www.miit-eidc.org.cn/art/2024/11/11/art_1644_11070.html.Low-Altitude Industry Alliance. The framwork of low-altitude intelligent network system(version 2024)[R/OL]. (2024-11-11)[2025-01-23]. https://www.miit-eidc.org.cn/art/2024/11/11/art_1644_11070.html(in Chinese). [2] U. S. Congress. Faa Modernization and reform act of 2012[Z/OL]//112TH Congress 2d Session. House of Representatives, Report112-381. (2012-05-10) [2025-01-23]. https://www.congress.gov/bill/112th-congress/house-bill/658/text. [3] Federal Aviation Administration. Integration of civil unmanned aircraft systems (UAS) in the national airspace system (NAS) roadmap (First Edition-2013)[R/OL]. (2013-11-07)[2025-01-23]. https://www.faa.gov/sites/faa.gov/files/uas/resources/policy_library/uas_roadmap_2013.pdf. [4] Federal Aviation Administration, National Aeronautics and Space Administration. UAS traffic management research plan (Version1.0)[Z/OL]. (2017-01-31)[2025-01-23]. https://www.faa.gov/sites/faa.gov/files/2022-08/FAA_NASA_UAS_Traffic_Management_Research_Plan.pdf. [5] U. S. Congress. Public law 114–190—FAA extension, safety, and security act of 2016[Z/OL]. (2016-06-15) [2025-01-23]. https://www.congress.gov/114/plaws/publ190/PLAW-114publ190.pdf. [6] Federal Aviation Administration. 14 CFR Part 107: Small unmanned aircraft systems [Z/OL]. [2025-01-23]. https://www.ecfr.gov/current/title-14/chapter-I/subchapter-F/part-107. [7] Federal Aviation Administration. Concept of operations v1.0: unmanned aircraft system (UAS) traffic management (UTM) [R/OL]. (2018-05-18)[2025-01-23]. https://www.nasa.gov/wp-content/uploads/2024/04/2018-utm-conops-v1-0-508.pdf?emrc=94dcbb. [8] Federal Aviation Administration. Concept of operations v2.0: unmanned aircraft system (UAS) traffic management (UTM) [R/OL]. (2020-03-02)[2025-01-23]. https://www.faa.gov/sites/faa.gov/files/2022-08/UTM_ConOps_v2.pdf. [9] GERMAN B J, DASKILEWICZ M J, TRANI A, et al. Aviation global demand forecast: model development and ISAAC studies-Task 3.7: concept of operations for ODM VTOL aircraft package delivery[J/OL]. [2025-01-23]. https://ntrs.nasa.gov/api/citations/20205005895/downloads/GeorgiaTech_eVTOL_Cargo_Final_Report_July2018.pdf. [10] RIMJHA M, ADE M, TARAFDAR S, et al. Aviation global demand forecast model development and ISAAC studies: UAS-VTOL Cargo study[J/OL]. [2025-01-23]. https://ntrs.nasa.gov/api/citations/20205005891/downloads/VirginiaTech_eVTOL_Cargo_Final_Report_July_2018.pdf. [11] GOYAL R, REICHE C, FERNANDO C, et al. Urban air mobility market study[R/OL]. [2025-01-23]. https://ntrs.nasa.gov/api/citations/20190001472/downloads/20190001472.pdf. [12] PATTERSON M D, ANTCLIFF K R, KOHLMAN L W. A proposed approach to studying urban air mobility missions including an initial exploration of mission requirements[C/OL]//Proceedings of the Annual Forum and Technology Display. [2025-01-23]. https://ntrs.nasa.gov/api/citations/20190000991/downloads/20190000991.pdf. [13] KOHLMAN L W, PATTERSON M D, RAABE B E. Urban air mobility network and vehicle type-modeling and assessment[R/OL]. [2025-01-23]. https://ntrs.nasa.gov/api/citations/20190001282/downloads/20190001282.pdf. [14] PATTERSON M D, ISAACSON D R, Mendonca N L, et al. An initial concept for intermediate-state, passenger-carrying urban air mobility operations[C/OL]//Proceedings of the AIAA Scitech 2021 Forum. [2025-01-23]. https://ntrs.nasa.gov/api/citations/20205010104/downloads/UAM_ConOps_SciTech2021_STRIVESsubmit.pdf. [15] Hill B P, DeCarme D, Metcalfe M, et al.UAM vision concept of operations (ConOps) UAM Maturity Level (UML) 4 [R/OL]. (2020-12-2)[2025-01-23]. https://ntrs.nasa.gov/citations/20205011091. [16] Hill B, DeCarme D.Urban Air Mobility (UAM) vision concept of operations (ConOps) UAM maturity level (UML)-4 overview[R/OL]. (2020-12-15)[2025-01-23]. https://ntrs.nasa.gov/citations/20210010443. [17] RICE G, HELTON D, JENKINS K, et al. Urban air mobility operational concept (opscon) passenger-carrying operations[R/OL]. (2020-05-01)[2025-01-23]. https://ntrs.nasa.gov/citations/20205001587. [18] STOUFFER V L, COTTON W B, DeAngelis R A, et al. Reliable, secure, and scalable communications, navigation, and surveillance (CNS) options for urban air mobility (UAM)[R/OL]. (2020-08-21)[2025-01-23]. https://ntrs.nasa.gov/citations/20205006661. [19] LEVITT I, PHOJANAMONGKOLKIJ N, HORN A, et al. UAM airspace research roadmap-Rev. 2.0[R/OL]. [2025-01-23]. https://ntrs.nasa.gov/api/citations/20230002647/downloads/NASA-TM-20230002647_Final.pdf. [20] Federal Aviation Administration. Advanced air mobility (AAM) implementation plan[R/OL]. [2025-01-23]. https://www.faa.gov/sites/faa.gov/files/AAM-I28-Implementation-Plan.pdf. [21] Federal Aviation Administration. Concept of operations v2.0: urban air mobility(UAM)[R/OL]. (2023-08-31)[2025-01-23]. https://www.faa.gov/air-taxis/uam_blueprint. [22] SESAR Joint Undertaking. European ATM master plan: Edition 1[R/OL]. (2009-03-30)[2025-01-23]. https://www.sesarju.eu/sites/default/files/European_ATM_Master_Plan.pdf. [23] European Commission. A new era for aviation-opening the aviation market to the civil use of remotely piloted aircraft systems in a safe and sustainable manner[R/OL]. [2025-01-23]. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014AE3189. [24] European Commission. An aviation strategy for Europe[R/OL]. [2025-01-23]. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52015DC0598. [25] SESAR Joint Undertaking. European drones outlook study: unlocking the value for Europe[R/OL]. [2025-01-23]. https://www.sesarju.eu/sites/default/files/documents/reports/European_Drones_Outlook_Study_2016.pdf. [26] European Parliament and Council. Regulation (EU) 2018/1139 of the European Parliament and of the Council of 4 July 2018 on common rules in the field of civil aviation and establishing a European Union Aviation Safety Agency[R/OL]. [2025-01-23]. https://eur-lex.europa.eu/eli/reg/2018/1139/oj/eng. [27] European Commission. Commission implementing regulation (EU) 2019/947 of 24 May 2019 on the rules and procedures for the operation of unmanned aircraft[R/OL]. [2025-01-23]. https://eur-lex.europa.eu/eli/reg_impl/2019/947/oj/eng. [28] European Commission. Commission delegated regulation (EU) 2019/945 of 12 March 2019 on unmanned aircraft systems and on third-country operators of unmanned aircraft systems[R/OL]. [2025-01-23]. https://eur-lex.europa.eu/eli/reg_del/2019/945/oj/eng. [29] SESAR Joint Undertaking. U-space: blueprint[R/OL]. (2017-06-09)[2025-01-23]. https://www.sesarju.eu/u-space-blueprint. [30] BARRADO C, BOYERO M, BRUCCULERI L, et al. U-space concept of operations: a key enabler for opening airspace to emerging low-altitude operations[J]. Aerospace, 2020, 7(3): 24. [31] SCOTT B I, ANDRITSOS K I. A drone strategy 2.0 for a smart and sustainable unmanned aircraft eco-system in Europe[J]. Air and Space Law, 2023, 48(3): 273-296. [32] SESAR Joint Undertaking. Fourth edition of the U-space concept of operations (ConOps)[R/OL]. [2025-01-23]. https://www.sesarju.eu/node/4544. [33] SESAR Joint Undertaking. 2025 edition of the European ATM master plan[R/OL]. [2025-01-23]. https://www.sesarju.eu/MasterPlan2025. [34] 国务院,中央军委. 关于深化我国低空空域管理改革的意见[N]. 光明日报,2010-11-15(2).State Council of the People’s Republic of China, Central Military Commission of the Communist Party of China. Opinions on deepening the reform of low-altitude airspace management in China[N]. Guangming Daily, 2010-11-15(2)(in Chinese). [35] 中央经济工作会议.2023年12月中央经济工作会议纪要[C/OL]. [2025-01-23]. https://www.gov.cn/yaowen/liebiao/202312/content_6919834.htm?fromModule=lemma_middle-info.Central Economic Work Conference. 2023 December Central Economic Work Conference Summary [C/OL]. [2025-01-23] https://www.gov.cn/yaowen/liebiao/202312/content_6919834.htm?fromModule=lemma_middle-info(in Chinese). [36] 全国人民代表大会和中国人民政治协商会.2024年政府工作报告[R/OL]. [2025-01-23]. https://www.gov.cn/yaowen/liebiao/202403/content_6939153.htm.The National People’s Congress and Chinese People's Political Consultative Conference. Government work report[R/OL]. [2025-01-23]. https://www.gov.cn/yaowen/liebiao/202403/content_6939153.htm(in Chinese). [37] 中国电子科技集团有限公司. 低空航行系统: 拥抱低空经济, 安全智慧出行[R/OL]. [2025-01-23]. https://cetcam.cetc.com.cn/zgdk/1593022/1592495/1816065/2024090608464631229.pdf.China Electronics Technology Group Corporation. Low-altitude navigation system: embracing low-altitude economy, safe and smart travel[R/OL]. [2025-01-23]. https://cetcam.cetc.com.cn/zgdk/1593022/1592495/1816065/2024090608464631229.pdf(in Chinese). [38] 中国移动通信集团有限公司. 低空智联网技术体系白皮书[R/OL]. [2025-01-23]. https://www.dtinsight.com.cn/nd.jsp?id=2826.China Mobile Communications Group Co. , Ltd. Low-altitude intelligent networked technology system white paper[R/OL]. [2025-01-23]. https://www.dtinsight.com.cn/nd.jsp?id=2826 (in Chinese). [39] 广东省通信学会, 中国信息通信研究院, 中国联合网络通信有限公司广东省分公司, 等. 低空智联网发展研究报告(2024年)[R/OL]. [2025-01-23]. https://hanglian.feishu.cn/file/BWBgbyPLxo39sqxmBktcGzX8nXe.Guangdong Institue of Communications, China Academy of Information and Communications Technology, China United Network Communications Limited Guangdong Branch, et al. Research report on the development of low-altitude intelligent networked[R/OL]. [2025-01-23]. https://hanglian.feishu.cn/file/BWBgbyPLxo39sqxmBktcGzX8nXe(in Chinese). [40] 中国电信集团有限公司, 爱立信,诺基亚, 等. 通感一体低空网络白皮书[R/OL]. [2025-01-23]. http://claei.com.cn/files/file/20241119/1731987437969932.pdfChina Telecom Corp Ltd., Ericsson, Nokia, et al. Integrated sensing and communication low-altitude network white paper [R/OL]. [2025-01-23]. http://claei.com.cn/files/file/20241119/1731987437969932.pdf(in Chinese). [41] 粤港澳大湾区数字经济研究院. 低空经济发展白皮书: 深圳方案[R/OL]. [2025-01-23]. http://www.cuaer.com/plus/view.php?aid=11756International Digital Economy Academy. Low-altitude economy development white paper: Shenzhen solutions[R/OL]. [2025-01-23]. http://www.cuaer.com/plus/view.php?aid=11756(in Chinese). [42] 粤港澳大湾区数字经济研究院. 低空经济发展白皮书: 全数字化方案[R/OL]. [2025-01-23]. https://www.hulianhutongshequ.cn/upload/tank/report/2024/202404/1/b47f07c17faa4b7ab3fe915f22b11a18.pdf.International Digital Economy Academy. Low-altitude economy development white paper: all digital solutions[R/OL]. [2025-01-23]. https://www.hulianhutongshequ.cn/upload/tank/report/2024/202404/1/b47f07c17faa4b7ab3fe915f22b11a18.pdf (in Chinese). [43] PUENTE-CASTRO A, RIVERO D, PAZOS A, et al. A review of artificial intelligence applied to path planning in UAV swarms[J]. Neural Computing and Applications, 2022, 34(1): 153-170. [44] SHRESTHA R, OH I, KIM S. A survey on operation concept, advancements, and challenging issues of urban air traffic management[J]. Frontiers in Future Transportation, 2021, 2: 626935. [45] Yan C, Xiang X, Wang C. Towards real-time path planning through deep reinforcement learning for a UAV in dynamic environments[J]. Journal of Intelligent & Robotic Systems, 2020, 98: 297-309. [46] 陈志杰, 朱永文, 刘杨. 基于数字化空域系统的城市无人机管理对策研究[J]. 中国民航大学学报, 2023, 41(3): 8-12. doi: 10.3969/j.issn.1674-5590.2023.03.002CHEN Z J, ZHU Y W, LIU Y. Research on urban drone management strategies based on digital airspace system[J]. Journal of Civil Aviation University of China, 2023, 41(3): 8-12(in Chinese). doi: 10.3969/j.issn.1674-5590.2023.03.002 [47] 陈志杰, 汤锦辉, 王冲, 等. 人工智能赋能空域系统, 提升空域分层治理能力[J]. 航空学报, 2021, 42(4): 525018.CHEN Z J, TANG J H, WANG C, et al. Artificial intelligence empowering airspace systems to enhance layered airspace governance capabilities[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 525018(in Chinese). [48] 刘泉, 陈瑶瑶, 洪晓苇, 等. 面向无人机的城市低空空域规划的国际经验[J]. 城市规划学刊, 2024(5): 64-70. doi: 10.16361/j.upf.202405009LIU Q, CHEN Y Y, HONG X W, et al. International experience in urban low-altitude airspace planning for drones[J]. Urban Planning Forum, 2024(5): 64-70(in Chinese). doi: 10.16361/j.upf.202405009 [49] International Civil Aviation Organization. Manual on the system-wide information management (SWIM) concept[R]. Montreal: ICAO, 2024. [50] International Civil Aviation Organization. Procedures for air navigation services-information management[R]. Montreal: ICAO, 2024. [51] 张军. 现代空中交通管理[M]. 2版. 北京: 北京航空航天大学出版社, 2024.ZHANG J. Modern air traffic management[M]. 2nd ed. Beijing: Beihang University Press, 2024(in Chinese). [52] 任冰洁. SWIM数据模型的设计与实现[D]. 天津:中国民航大学, 2022.REN B J. Design and implementation of the SWIM data model[D]. Tianjin: Civil Aviation University of China, 2022(in Chinese). [53] FREEMAN K, SHETYE S, WONG C, et al. NASA data and reasoning fabric (DRF)[R/OL]. [2025-01-23]. https://ntrs.nasa.gov/api/citations/20220010954/downloads/DRF_External_Outreach_presentation_19.07.22%20%20-%20%20Repairedr.pdf. [54] 国家市场监督管理总局,国家标准化管理委员会.民用无人驾驶航空器系统运行识别规范(征求意见稿)[S/OL]. (2025-01-09)[2025-01-23]. https://www.caac.gov.cn/HDJL/YJZJ/202502/t20250212_226676.html.State Administration for Market Regulation, National Standardization Administration.Specification for civil unmanned aircraft system operational identification[S/OL]. (2025-01-09)[2025-01-23]. https://www.caac.gov.cn/HDJL/YJZJ/202502/P020250212316294948285.pdf (in Chinese). [55] 中国民用航空局空管行业管理办公室.民用微轻小型无人驾驶航空器系统运行识别概念(暂行)[S/OL]. (2022-03-11)[2025-01-23]. https://www.caac.gov.cn/XXGK/XXGK/GFXWJ/202203/t20220311_212290.html.Civil Aviation Administration of China. Concept of operation identification for civil micro, light, and small unmanned aircraft systems (Interim)[S/OL]. (2022-03-11)[2025-01-23]. https://www.caac.gov.cn/XXGK/XXGK/GFXWJ/202203/t20220311_212290.html(in Chinese). [56] 国家市场监督管理总局,国家标准化管理委员会. 民用无人驾驶航空器系统安全要求[S]. (2023-05-23). https://std.samr.gov.cn/gb/search/gbDetailed?id=FC83293D549DB452E05397BE0A0A9309.State Administration for Market Regulation, National Standardization Administration.Safety requirements for civil unmanned aircraft system[S]. (2023-05-23). https://std.samr.gov.cn/gb/search/gbDetailed?id=FC83293D549DB452E05397BE0A0A9309 (in Chinese). [57] Radio Technical Commission for Aeronautics Special Committee-228. Minimum operational performance standards (MOPS) for air-to-air radar for traffic surveillance[S/OL]. (2020-09-10)[2025-01-23]. https://products.rtca.org/21djqiu/. [58] 汤新民, 顾俊伟, 刘冰, 等. 低空监视技术及其发展趋势综述[J]. 南京航空航天大学学报, 2024, 56(6): 973-993. doi: 10.16356/j.1005-2615.2024.06.001TANG X M, GU J W, LIU B, et al. Overview of low-altitude surveillance technology and its development trends[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2024, 56(6): 973-993(in Chinese). doi: 10.16356/j.1005-2615.2024.06.001 -