留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

网格简化中基于特征矩阵的二次误差测度算法

陈伟海 徐鲤鸿 刘敬猛 王建华

陈伟海, 徐鲤鸿, 刘敬猛, 等 . 网格简化中基于特征矩阵的二次误差测度算法[J]. 北京航空航天大学学报, 2009, 35(5): 572-575.
引用本文: 陈伟海, 徐鲤鸿, 刘敬猛, 等 . 网格简化中基于特征矩阵的二次误差测度算法[J]. 北京航空航天大学学报, 2009, 35(5): 572-575.
Chen Weihai, Xu Lihong, Liu Jingmeng, et al. Quadric error metrics for mesh simplification based on feature matrix[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(5): 572-575. (in Chinese)
Citation: Chen Weihai, Xu Lihong, Liu Jingmeng, et al. Quadric error metrics for mesh simplification based on feature matrix[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(5): 572-575. (in Chinese)

网格简化中基于特征矩阵的二次误差测度算法

基金项目: 国家863计划资助项目(2006AA04Z218)(2008AA04Z210); 国家自然科学基金资助项目(60775059)
详细信息
    作者简介:

    陈伟海(1955-),男,浙江象山人,教授,whchenbuaa@126.com.

  • 中图分类号: TP 391

Quadric error metrics for mesh simplification based on feature matrix

  • 摘要: 针对二次误差测度算法存在尖端特征消失、局部过度简化等缺陷,提出了基于特征矩阵的二次误差测度算法用于网格简化.通过将顶点曲率和边长引进该特征矩阵以优化误差度量,模型中各顶点便易于区分,于是具有明显几何特征区域的顶点误差度量能够被提高.这样,边折叠的顺序可以方便的得到调整,使得模型中的突出特征更多的被保留下来.仿真结果表明,本算法在保持了二次误差测度算法计算时间短、运行效率高的同时,也克服了网格分布过于均匀、无法突出模型重要特征的缺点.

     

  • [1] Low K L, Tan T S. Model simplification using vertex-clustering van Dam An. Proceedings of the 1997 Symposium on Interactive 3D Graphics. New York: ACM Press, 1997:43-50 [2] Turk G. Re-tiling polygonal surfaces [J]. Proceedings of the Computer Graphics, 1992, 26(2):55-64 [3] Kalvin A D, Taylor R H. Surperfaces: polygonal mesh simplification with bounded error [J]. IEEE Computer Graphics and Applications, 1996, 16(3): 64-77 [4] Ciampalini A, Cignoni P, Montani C, et al. Multiresolution decimation based on global error [J]. The Visual Computer, 1997, 13(5):228-246 [5] Lounsbery M, DeRose T, Warren J. Multiresolution analysis for surfaces of arbitrary topological type [J]. ACM Transactions on Graphics, 1997, 16(1):34-73 [6] Hoppe H. Progressive meshes Fujii J. Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1996:99-108 [7] Chen Jiaxin, Hu Haihe. One mesh model simplification method based on shape transform of triangles Hirose M. Proceedings of the 16th International Conference on Artificial Reality and Telexistence-Workshops. Washington DC: IEEE Computer Society, 2006: 74-79 [8] Hoppe H, DeRose T, Duchamp T, et al. Mesh optimization Mary C. Whitton. Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1993:19-26 [9] Garland M, Zhou Y. Quadric-based simplification in any dimension [J]. ACM Transactions on Graphics, 2005, 24(2):1066-1073
  • 加载中
计量
  • 文章访问数:  3614
  • HTML全文浏览量:  104
  • PDF下载量:  1728
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-08-10
  • 网络出版日期:  2009-05-31

目录

    /

    返回文章
    返回
    常见问答