Application of fuzzy sliding mode iterative learning control algorithm in hydraulic servo system
-
摘要: 普通比例(P, Proportion)和比例微分(PD, Proportion and Differential)迭 代学习控制(ILC, Iterative Learning Control)算法在液压位置伺服系统中收敛速度比较 慢,很难在实际中应用.为了提高ILC算法的收敛速度,将滑模控制算法引入ILC,提出模糊 滑模迭代学习控制(FSMILC, Fuzzy Sliding Mode Iterative Learning Control)算法,利 用滑模控制响应快的优点来加速ILC的收敛速度,利用模糊控制来减小滑模控制所引起的抖 动问题.FSMILC算法的实质是以系统的滑模函数作为模糊控制器的输入,以模糊控制器的输 出作为ILC的控制增量.通过仿真可以看出,FSMILC算法能够实现系统快速收敛,相对于P型 和PD型具有明显优势.Abstract: The common P(proportion) type or PD(proportion and differential) type ILC(iterative learning control) is difficult to apply in a hydraulic servo syste m because of its low convergence rate. To improve the convergence rate, a new IL C based on a sliding mode fuzzy control is presented which combines a sliding mo de control with ILC. The new algorithm makes use of the fast response merit of a sliding mode control to quicken the convergence of ILC. The fuzzy control in th e algorithm can smooth the control signal and lessen the common dithering of sli ding mode control. The FSMILC(fuzzy sliding mode iterative learning control) is an iterative learning control algorithm essentially, which takes the function of a sliding mode control as the input of fuzzy control and takes the fuzzy contro l output as the control increment of iterative learning control. The simulation results indicate that the new algorithm is effective, which can achieve higher s peediness than that of iterative learning control of P type or PD type.
-
[1] Uchiyama M. Formulation of high-speed motion of a mecha nical arm by trial [J]. Transactions of Society of Instrumentation and Control Engineers, 1978, 14(6):706-712 [2] Arimoto S,Kawamura S,Miyazaki F. Bettering operation of robots by learn ing [J]. Journal of Robotics Systems,1984,1(2):124-140 [3] 谢胜利,田森平,谢振东.基于向量图分析的迭代学习控制非线性算法 .控制理论与应用,2004,21(6):951-955 Xie Shengli, Tian Senping, Xie Zhendong. Iterative learning control nonlinear al gorithms based on vector plots analysis [J]. Control Theory & Applications, 20 04, 21(6):951-955(in Chinese) [4] 于少娟,段锁林,吴聚华.电液伺服力控系统的模糊学习控制[J].电机与控制学报, 2004,8(1):56-59 Yu Shaojuan, Duan Suolin, Wu Juhua. Fuzzy learning control of the electro-hydrau lic servo force control system [J]. Electric Machines and Control, 2004,8(1): 56-59 (in Chinese) [5] Xu J X, Viswanathan B. Adaptive robust iterative learning control with dead zone scheme[J]. Automatica, 2000, 36(1):91-99 [6] Vecchio D D, Mario R, Tomei P. Adaptive learning control for robot manipu lator Proceedings of the American Control Conference. Arlington:,2001:641- 645 [7] Togai M,Yamano O. Analysis and design of an optimal learning control sch eme for industrial robots:a discrete system approach Proceedings of the 24th IEEE Conference on Decision and Control. Fort Lauderdale:,1985:1399-1404 [8] Bondi P, Casalino G, Gambardella L. On the iterative learning control th eory for robotic manipulators [J]. IEEE Journal of Robotics and Automation, 19 98,4(1):14-22 [9] Tayebi A,Zaremba M B. Exponential convergence of an iterative learning c ontroller for time-varying nonlinear systems Proc of the Conference on D ecision and Control. Phoenix, Arizona USA:,1999:1593-1598 [10] 刘金琨.滑模变结构控制Matlab仿真[M]. 北京:清华大学出版社, 2005:100-120 Liu Jinkun. Matlab simulation for fuzzy sliding mode control [M]. Beijing:Tsi nghua University Press, 2005:100-120(in Chinese) -

计量
- 文章访问数: 3400
- HTML全文浏览量: 287
- PDF下载量: 963
- 被引次数: 0