Novel autofocus algorithm based on DCT for SAR images
-
摘要: 研究了一种基于离散余弦变换(DCT, Discrete Cosine Transform)的SAR(Synthetic Aperture Radar)图像自聚焦算法.该方法从复图像域出发,通过在距离压缩相位历史域引入相位误差模型,改变图像的聚焦程度直至一维像的DCT序列在高序数区域的权值达到最大,从而完成误差校正.同相位梯度自聚焦算法相比,该方法无需在图像域分离出强点目标,因此特别适用于无任何明显特征的图像.由于DCT存在快速算法,使得该自聚焦算法计算量较少,更易实现.实测数据及仿真数据的成像结果证明了此方法的可行性.Abstract: A novel autofocus algorithm for SAR(synthetic aperture radar) images is presented, which is based on DCT(discrete cosine transform). The method, which starts with complex phase-degraded SAR image, after phase errors model is introduced into the range-compressed phase-history domain, carries out phase errors correction by changing the focus until the intensity of the weight function of the azimuth profile in the area of high sequencies is maximized. Compared with the PGA autofocus algorithm, this autofocus algorithm needs not isolate prominent point target in image domain and is especially suitable for the images without specific characteristic. This autofocus algorithm is of less computational complexity and easy to implement, because there are fast algorithms for DCT. The simulation and the processing results of the measured data show the validity of the proposed method.
-
Key words:
- SAR(synthetic aperture radar) /
- DCT(discrete cosine transform) /
- autofocus /
- phase errors
-
[1] Li F K, Held D N, Curlander J, et al. Doppler parameter estimation for spaceborne synthetic aperture radar[J].IEEE Trans on GRS, 1985, 23(1):47~56 [2] Wahl D E, Eichel P H, Ghiglia D C, et al. Phase gradient autofocus—a robust tool for high resolution SAR phase correction[J]. IEEE Trans on AES, 1994, 30(3):827~835 [3] 武昕伟,朱兆达.一种基于最小熵准则的SAR图像自聚焦算法[J].系统工程与电子技术,2003, 25(7):865~869 Wu Xinwei, Zhu Zhaoda. A novel autofocus algorithm based on minimum entropy criteria for SAR images[J]. Systems Engineering and Electronics, 2003, 25(7):865~869(in Chinese) [4] Charfi M, Nyeck A, Tosser A. Focusing criterion[J]. IEEE Electronics Letters, 1991,27(14):1233~1235 [5] Ahmed N T, Natarajan, Rao K R. Discrete cosine transform[J]. IEEE Trans on Computer, 1974,23(1):90~93. [6] Rao K R, Yip P. Discrete cosine transform:algorithms, advantages, applications[M]. New York:Academic Press,1990 [7] 奥本海姆A V, 谢弗R W, 巴克J B. 离散时间信号处理[M].第二版.西安:西安交通大学出版社, 2001. 474~483 Oppenheim A V, Schafer R W, Buck J R. Discrete-time signal processing[M]. 2nd. Xi’an:Xi’an Jiaotong University Press, 2001.474~483(in Chinese) [8] 张澄波.综合孔径雷达原理、系统分析与应用[M].北京:科学出版社,1989. 163~178 Zhang Chengbo.Synthetic aperture radar theory, system analysis and applications[M].Beijing:Science Press, 1989. 163~178(in Chinese) 期刊类型引用(8)
1. 郭启敏,张鹏,王应洋,王石. 无人机自主航迹规划智能算法综述. 航空兵器. 2023(03): 29-40 . 百度学术
2. 高石印,石玮,王聪阜,刘辉. 基于强化学习的雷达对抗侦察无人机航线规划. 空天预警研究学报. 2023(02): 119-123 . 百度学术
3. 刘开芬,冯烨,张飞霞,陈晔. 一种多无人机分布式路径规划算法. 电讯技术. 2023(10): 1507-1514 . 百度学术
4. 张冬,杨继国,尤灵辰,杨大鹏. 基于可变自主等级的有人机/无人机控制方法. 无人系统技术. 2023(06): 80-90 . 百度学术
5. 马申佳,木子尧,曹新益,程煜峰,兰盾,安磊. 基于FOA的无人机协同态势感知搜寻模型构建及应用. 网络安全与数据治理. 2023(S1): 137-142 . 百度学术
6. 刘明,闫井超,文炜,洪东亮. 基于复杂逻辑约束的自主应急联动系统设计. 电子设计工程. 2022(02): 138-141+146 . 百度学术
7. 王凯. 面向铁路工程三维信息重建的无人机航线规划改进方法. 铁道建筑. 2022(10): 151-155 . 百度学术
8. 贺井然,何广军,于学生. 基于改进蜂群算法的无人机路径规划. 火力与指挥控制. 2021(10): 103-106 . 百度学术
其他类型引用(3)
-

计量
- 文章访问数: 2589
- HTML全文浏览量: 92
- PDF下载量: 857
- 被引次数: 11