## 留言板

Euler方程的分裂型通量分裂双时间步隐式方法

 引用本文: 董海涛, 陈喆, 刘福军等 . Euler方程的分裂型通量分裂双时间步隐式方法[J]. 北京航空航天大学学报, 2015, 41(5): 776-785.
DONG Haitao, CHEN Zhe, LIU Fujunet al. Split-type implicit scheme using flux splitting and dual-time step for Euler equations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5): 776-785. doi: 10.13700/j.bh.1001-5965.2014.0326(in Chinese)
 Citation: DONG Haitao, CHEN Zhe, LIU Fujunet al. Split-type implicit scheme using flux splitting and dual-time step for Euler equations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5): 776-785. (in Chinese)

• 中图分类号: O35

## Split-type implicit scheme using flux splitting and dual-time step for Euler equations

• 摘要: 传统隐式方法有格式复杂、计算量大等缺点,在Euler方程的差分离散过程中,利用算子分裂思想,结合通量分裂法、双时间步法等隐式离散方法,构造了一种更简单的分裂型隐式计算方法.通过对典型空气动力学问题的计算,检验了该方法的有效性和可靠性,并对其性能做了具体讨论.该方法具有稳定性好、时间步长约束小等隐式格式的普遍优点,同时具有格式简单、程序易实现等优点;避免了传统隐式方法单步推进时的方程组常规求解及矩阵求逆过程,计算量小;比LU-SGS方法收敛速度快.

•  [1] Pulliam T H. Development of implicit method in CFD NASA Ames Research Center 1970s-1980s[J].Computers & Fluids,2011,41(1):65-71. [2] Beam R M,Warming R F.An implicit finite-difference algorithm for hyperbolic system in conservation law form[J].Journal of Computational Physics,1976,22(1):87-109. [3] Beam R W,Warming R F.An implicit factored scheme for the compressible Navier-Stokes equations[J].AIAA Journal,1978,16(4):393-402. [4] Biringer M,McMillan O J.Calculation of two dimensional inlet fields by an implicit method including viscous effect:program documentation and test case,NASA-CR-81-3414[R].Washington,D.C.:NASA,1981. [5] Pulliam T H,Chaussee D S.A diagonal form of an implicit approximate factorization algorithm[J].Journal of Computational Physics,1981,39(2):347-363. [6] Chaussee D S,Pulliam T H.Two dimensional inlet simulation using a diagonal implicit algorithm[J].AIAA Journal,1981,19(2): 153-159. [7] Yoon S,Jameson A.Lower-upper symmetric Gauss-Sediel method for the Euler and Navier-Stoker equations[J].AIAA Journal,1988,26(9):1025-1026. [8] Jameson A. Time dependent calculations using multigrid with application to unsteady flows past airfoils and wings[C]//AIAA 10th Computational Fluid Dynamics Conference.Reston:AIAA,1991:1-4. [9] Steger J L,Warming R F.Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods[J].Journal of Computational Physics,1981,40(2):263-293. [10] 张小蜂,张红武.Crank-Nicolson格式精度的改进[J].水科学进展,2001,12(1):33-38. Zhang X F,Zhang H W.Efficient improvement of Crank-Nicolson scheme[J].Advances in Water Science,2001,12(1):33-38(in Chinese). [11] 陈培基,陆夕云,庄礼贤.一种修正的隐式NND格式[J].计算物理,1996,13(3):379-384. Chen P J,Lu X Y,Zhuang L X.A modified implicit NND difference scheme[J].Chinese Journal of Computational Physics,1996,13(3):379-384(in Chinese). [12] 张德良. 计算流体力学教程[M].北京:高等教育出版社,2010:331-332. Zhang D L.A course in computational fluid dynamics[M].Beijing:High Education Press,2010:331-332(in Chinese). [13] Collela P. A direct Eulerian MUSCL scheme for gas dynamics[J].SIAM Journal on Scientific and Statistical Compuing,1985,6(1):104-117. [14] 水鸿寿. 一维流体力学差分方法[M].北京:国防工业出版社,1998:509-512. Shui H S.Difference methods of one-dimensional fluid dynamics[M].Beijing:Defense Industry Press,1998:509-512(in Chinese). [15] 赵慧勇,乐嘉陵. 双时间步方法的应用分析[J].计算物理,2008,25(3):253-258. Zhao H Y,Le J L.Application analysis on dual-time stepping[J].Chinese Journal of Computational Physics,2008,25(3):253-258(in Chinese). [16] 钱战森. 大时间步长、高分辨率差分格式研究及其应用[D].北京:北京航空航天大学,2011. Qian Z S.On large time step,high resolution finite difference schemes for hyperbolic conservation laws and applications[D].Beijing:Beijing University of Aeronautics and Astronautics,2011(in Chinese). [17] 李素循. 典型外形高超声速流动特性[M].北京:国防工业出版社,2006:18-39. Li S X.Hypersonic flow characteristics of typical shapes[M].Beijing:National Defense Industry Press,2006:18-39(in Chinese).

##### 计量
• 文章访问数:  810
• HTML全文浏览量:  25
• PDF下载量:  742
• 被引次数: 0
##### 出版历程
• 收稿日期:  2014-06-06
• 修回日期:  2014-12-05
• 刊出日期:  2015-05-20

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈

常见问答