留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于NUIO的无人机作动器故障检测

张鹤 钟麦英

张鹤, 钟麦英. 基于NUIO的无人机作动器故障检测[J]. 北京航空航天大学学报, 2015, 41(7): 1300-1306. doi: 10.13700/j.bh.1001-5965.2014.0522
引用本文: 张鹤, 钟麦英. 基于NUIO的无人机作动器故障检测[J]. 北京航空航天大学学报, 2015, 41(7): 1300-1306. doi: 10.13700/j.bh.1001-5965.2014.0522
ZHANG He, ZHONG Maiying. NUIO based actuator fault detection for a UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1300-1306. doi: 10.13700/j.bh.1001-5965.2014.0522(in Chinese)
Citation: ZHANG He, ZHONG Maiying. NUIO based actuator fault detection for a UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1300-1306. doi: 10.13700/j.bh.1001-5965.2014.0522(in Chinese)

基于NUIO的无人机作动器故障检测

doi: 10.13700/j.bh.1001-5965.2014.0522
基金项目: 国家自然科学基金(61333005, 61174121, 61121003)
详细信息
    作者简介:

    张鹤(1988—),女,吉林长春人,硕士研究生,hezhang_buaa@126.com

    通讯作者:

    钟麦英(1965—),女,山东博兴人,教授,myzhong@buaa.edu.cn,主要研究方向为故障诊断与容错控制.

  • 中图分类号: V448;TP273

NUIO based actuator fault detection for a UAV

  • 摘要: 针对受未知气流干扰与随机噪声影响的无人机纵向系统进行作动器故障检测研究.在建立固定翼式无人机非线性系统纵向模型的基础上,设计了基于容积卡尔曼滤波(CKF)的非线性未知输入观测器(NUIO).通过构造未知输入观测器结构来解耦未知气流干扰对残差的影响,同时,CKF被算法用于求解观测器增益矩阵,实现了在未知气流干扰解耦情况下残差对随机噪声的鲁棒性.最后,利用残差χ2检验方法判断故障是否发生.仿真结果表明:此方法能有效解耦未知干扰对残差的影响,并快速、准确地检测出了无人机作动器故障.

     

  • [1] 蔡志浩, 杨丽曼, 王英勋, 等.无人机全空域飞行影响因素分析[J].北京航空航天大学学报, 2011, 37(2): 176-184. Cai Z H, Yang L M, Wang Y X, et al.Analysis for whole airspace flight key factors of unmanned aerial vehicles[J].Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(2): 176-184(in Chinese).
    [2] Hansen S, Blanke M.Control surface fault diagnosis for small autonomous aircraft[C]//Proceeding of the Australian Control Conference.Piscataway, NJ: IEEE Press, 2011: 185-190.
    [3] Panitsrisit P, Ruangwiset A.Sensor system for fault detection identification and accommodation of elevator of UAV[C]//Proceedings of SICE Annual Conference.Piscataway, NJ: IEEE Press, 2011: 1035-1040.
    [4] Freddi A, Longhi S, Monteriù A.A diagnostic Thau observer for a class of unmanned vehicles[J].Journal of Intelligent & Robotic Systems, 2012, 67(1): 61-73.
    [5] 朱上翔.大气扰动及其对飞行的影响[J].航空学报, 1985, 6(2): 149-156. Zhu S X.Atmospheric turbulence and the effects on flight[J].Acta Aeronautica et Astronautica Sinica, 1985, 6(2): 149-156(in Chinese).
    [6] Frank P M, Ding X.Survey of robust residual generation and evaluation methods in observer-based fault detection systems[J].Journal of Process Control, 1997, 7(6): 403-424.
    [7] Bateman F, Noura H, Ouladsine M.An actuator fault detection, isolation and estimation system for an UAV using input observers[C]//Proceedings of European Control Conference.Piscataway, NJ: IEEE Press, 2007: 1805-1810.
    [8] Bateman F, Noura H, Ouladsine M.Active fault detection and isolation strategy for an unmanned aerial vehicle with redundant flight control surfaces[C]//Proceeding of the 16th Mediterranean Conference on Control and Automation.Piscataway, NJ: IEEE Press, 2008: 1246-1251.
    [9] Tousi M M, Khorasani K.Robust observer-based fault diagnosis for an unmanned aerial vehicle[C]//Proceeding of Systems Conference.Piscataway, NJ: IEEE Press, 2011: 428-434.
    [10] Yang X, Mejias L, Gonzalez F, et al.Nonlinear actuator fault detection for small-scale UASs[J].Journal of Intelligent & Robotic Systems, 2014, 73(1-4): 557-572.
    [11] Guillaume D, Hans P G.Efficient nonlinear actuator fault detection and isolation system for unmanned aerial vehicles[J].Journal of Guidance, Control & Dynamics, 2008, 31(1): 225-237.
    [12] Cen Z H, Noura H, Tri B S.Robust fault diagnosis for quadrotor UAVs using adaptive Thau observer[J].Journal of Intelligent & Robotic Systems, 2014, 73: 573-588.
    [13] Witczak M, Pretki P.Design of an extended unknown input observer with stochastic robustness techniques and evolutionary algorithms[J].International Journal of Control, 2007, 80(5): 749-762.
    [14] Zarei J, Shokri E.Robust sensor fault detection based on nonlinear unknown input observer[J].Measurement, 2014, 48: 355-367.
    [15] 吴森堂, 费玉华.飞行控制系统[M].北京: 北京航空航天大学出版社, 2005: 64-70. Wu S T, Fei Y H.Flight control system[M].Beijing: Beihang University Press, 2005: 64-70(in Chinese).
    [16] Miller R H, Ribbens W B.The effects of icing on the longitudinal dynamics of an icing research aircraft, AIAA-1999-0636[R].Reston: AIAA, 1999.
    [17] Zhai R, Zhou Z, Zhang W, et al.Control and navigation system for a fixed-wing unmanned aerial vehicle[J].AIP Advances, 2014, 4(3): 1306.
    [18] Li Z, Ding J.Ground moving target tracking control system design for UAV surveillance[C]//Proceeding of International Conference on Automation and Logistics.Piscataway, NJ: IEEE Press, 2007: 1458-1463.
    [19] Arasaratnam I, Haykin S.Cubature Kalman filters[J].IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269.
    [20] Witczak M, Obuchowicz A, Korbicz J.Genetic programming based approaches to identification and fault diagnosis of nonlinear dynamic systems[J].International Journal of Control, 2002, 75(13): 1012-1031.
  • 加载中
计量
  • 文章访问数:  1174
  • HTML全文浏览量:  165
  • PDF下载量:  514
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-22
  • 修回日期:  2014-11-21
  • 网络出版日期:  2015-07-20

目录

    /

    返回文章
    返回
    常见问答