留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实时鲁棒的频域空间目标跟踪方法

汪溁鹤 陈裕雄 马世龙 吕江花

汪溁鹤, 陈裕雄, 马世龙, 等 . 实时鲁棒的频域空间目标跟踪方法[J]. 北京航空航天大学学报, 2017, 43(12): 2457-2465. doi: 10.13700/j.bh.1001-5965.2016.0906
引用本文: 汪溁鹤, 陈裕雄, 马世龙, 等 . 实时鲁棒的频域空间目标跟踪方法[J]. 北京航空航天大学学报, 2017, 43(12): 2457-2465. doi: 10.13700/j.bh.1001-5965.2016.0906
WANG Ronghe, CHEN Yuxiong, MA Shilong, et al. Real-time and robust object tracking method in frequency domain space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2457-2465. doi: 10.13700/j.bh.1001-5965.2016.0906(in Chinese)
Citation: WANG Ronghe, CHEN Yuxiong, MA Shilong, et al. Real-time and robust object tracking method in frequency domain space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2457-2465. doi: 10.13700/j.bh.1001-5965.2016.0906(in Chinese)

实时鲁棒的频域空间目标跟踪方法

doi: 10.13700/j.bh.1001-5965.2016.0906
基金项目: 

国家自然科学基金 61003016

国家自然科学基金 61300007

国家自然科学基金 61305054

科技部基本科研业务费重点科技创新类项目 YWF-14-JSJXY-007

中央高校基本科研业务费专项资金 YWF-15-GJSYS-106

软件开发环境国家重点实验室自由探索基金 ZX2015ZX-09

软件开发环境国家重点实验室自由探索基金 SKLSDE-2014ZX-06

软件开发环境国家重点实验室自由探索基金 SKLSDE-2012ZX-28

软件开发环境国家重点实验室自由探索基金 SKLSDE-2015ZX-09

软件开发环境国家重点实验室自由探索基金 SKLSDE-2013ZX-11

详细信息
    作者简介:

    汪溁鹤 男, 博士研究生。主要研究方向:计算机视觉、图形图像、虚拟现实技术与系统

    陈裕雄 男, 硕士, 讲师。主要研究方向:计算机软件与理论

    马世龙 男, 博士, 教授, 博士生导师。主要研究方向:计算机软件与理论

    吕江花 女, 博士, 副教授, 硕士生导师。主要研究方向:计算机软件与理论

    通讯作者:

    吕江花, E-mail: jhlv@nlsde.buaa.edu.cn

  • 中图分类号: TP391.41

Real-time and robust object tracking method in frequency domain space

Funds: 

National Natural Science Foundation of China 61003016

National Natural Science Foundation of China 61300007

National Natural Science Foundation of China 61305054

Ministry of Science and Technology Basic Scientific Research Business Expenses Focused on Scientific and Technological Innovation Projects YWF-14-JSJXY-007

the Fundamental Research Funds for the Central Universities YWF-15-GJSYS-106

Free Discovery Funds of State Key Laboratory of Software Development Environment ZX2015ZX-09

Free Discovery Funds of State Key Laboratory of Software Development Environment SKLSDE-2014ZX-06

Free Discovery Funds of State Key Laboratory of Software Development Environment SKLSDE-2012ZX-28

Free Discovery Funds of State Key Laboratory of Software Development Environment SKLSDE-2015ZX-09

Free Discovery Funds of State Key Laboratory of Software Development Environment SKLSDE-2013ZX-11

More Information
  • 摘要:

    本文中实现了一种实时鲁棒的目标跟踪方法,提出了新颖的基于目标形状和外观的稠密循环采样方法、循环矩阵和频域空间的能量最小化目标跟踪方法。本文方法总体上减少了需要处理的数据量,尤其是加入了循环矩阵,极大地简化了计算过程,并将目标特征转换到高维频域空间进行了线性表示,最后用高频空间能量最小化的方法实现了更加快速和精准的目标跟踪。通过大量的对比实验表明,本文方法的总体效果较好,在目标朝向变化、场景光照变化、视频抖动、目标尺度模式变化、目标部分遮挡等环境下,较目前效果最好、最新的方法,本文方法在综合的跟踪精度和效率方面更能取得较好的效果。

     

  • 图 1  本文方法框架

    Figure 1.  Architecture of proposed method

    图 2  本文方法和经典方法采样方式的对比

    Figure 2.  Comparison of sampling mode between proposed method and classic method

    图 3  相关采样区域和核心采样区域

    Figure 3.  Related area and core area of sampling

    图 4  循环矩阵的代数模型和循环采样过程

    Figure 4.  Algebra model of circulation matrix and circulation sampling process

    图 5  频域的计算结果

    Figure 5.  Calculation results of frequency domain

    图 6  中心位置错误率和平均包围盒覆盖率示意图

    Figure 6.  Schematic of center position error rate and average bounding box error rate

    表  1  标准数据集中选取的主要挑战序列

    Table  1.   Main challenge sequence selected from standard database

    主要挑战序列 视频序列
    场景光照变化 Car4
    目标尺度模式变化 Walking2
    目标部分遮挡 Singer1
    目标变形 Faceocc2
    运动模糊 Caviar
    快速运动 David2
    平面内旋转 CarDark
    平面外旋转 Woman
    视点变化 Singer1
    目标朝向变化 Dudek
    复杂背景 David
    低分辨率 Faceocc2
    下载: 导出CSV

    表  2  目标跟踪标准数据集中各挑战序列和相关的跟踪结果

    Table  2.   Each challenge sequence and relative tracking results in standard target tracking database

    主要挑战序列 跟踪效果
    场景光照变化
    快速运动
    目标朝向变化
    目标尺度模式变化
    视频抖动
    目标部分遮挡
    相似背景干扰
    其他情形
    下载: 导出CSV

    表  3  中心位置错误率测试结果

    Table  3.   Test results of center position error rate

    %
    测试数据集 本文方法 IVT Frag TLD MTT Struck L1APG LSK MIL DFT LSK OMA ASLA
    Basketball 2.11 4.5 12.11 22.99 3.21 3.85 3.24 11.32 10.23 1.97 3.55 11.58 1.88
    Car4 1.17 1.56 23 31.21 1.54 10.46 1.38 5.64 9.35 1.45 2.56 7.68 1.18
    Singer 3.5 3.65 38.46 38.41 9.87 9.62 65.23 24.36 15.34 27.36 9.65 12.54 4.23
    Dudek 6.24 11.32 87.99 31.87 17.82 18.32 6.91 17.35 9.65 11.27 11.89 17.65 8.75
    Faceocc2 5.22 7.23 15.19 18 6.03 6.55 9.35 16.89 12.36 5.99 17.86 15.28 22.75
    CarDark 3.81 12.68 29 10.77 14.32 13.78 4.6 14.19 8.34 5.67 15.25 9.49 3.86
    David 3.65 71.45 19.66 63.8 65.09 66.06 66.87 14.57 5.38 62.9 65.85 6.29 3.67
    Caviar 3.37 138.65 113.26 59.27 3.38 3.56 123.65 34.75 35.62 134.61 55.21 65.32 146.32
    Woman 2.56 1.87 4.62 2.54 2.94 2.99 4.65 6.34 6.54 46.66 5.32 4.59 1.65
    MotorRolling 3.15 2.96 61.23 60.66 11.99 11.98 3.52 3.69 56.32 2.1 12.34 10.63 3.16
    Shaking 18.88 45.32 35.21 21.45 18.87 18.89 41.32 17.54 18.65 41.36 25.34 19.65 44.8
    下载: 导出CSV

    表  4  平均包围盒覆盖率测试结果

    Table  4.   Test results of average bounding box error rate

    %
    测试数据集 本文方法 IVT Frag TLD MTT Struck L1APG LSK MIL DFT LSK OMA ASLA
    Basketball 0.89 0.78 0.46 0.62 0.98 0.48 0.78 0.67 0.81 0.68 0.59 0.59 0.84
    Car4 0.87 0.85 0.18 0.36 0.85 0.87 0.85 0.89 0.83 0.69 0.59 0.71 0.83
    Singer 0.79 0.69 0.27 0.49 0.35 0.56 0.27 0.76 0.68 0.95 0.35 0.68 0.68
    Dudek 0.91 0.78 0.48 0.67 0.72 0.66 0.78 0.67 0.69 0.58 0.68 0.8 0.75
    Faceocc2 0.92 0.74 0.62 0.59 0.87 0.67 0.69 0.38 0.65 0.67 0.67 0.76 0.56
    CarDark 0.79 0.49 0.34 0.67 0.46 0.39 0.78 0.67 0.57 0.37 0.65 0.59 0.79
    David 0.93 0.26 0.46 0.18 0.23 0.24 0.27 0.68 0.69 0.59 0.58 0.68 0.85
    Caviar 0.86 0.2 0.27 0.26 0.19 0.77 0.19 0.69 0.76 0.49 0.32 0.67 0.16
    Woman 0.87 0.74 0.67 0.69 0.33 0.71 0.67 0.38 0.34 0.69 0.68 0.67 0.79
    MotorRolling 0.85 0.73 0.28 0.27 0.89 0.51 0.76 0.59 0.59 0.69 0.68 0.67 0.85
    Shaking 0.83 0.24 0.19 0.26 0.24 0.53 0.29 0.68 0.78 0.67 0.84 0.69 0.23
    下载: 导出CSV

    表  5  精度、鲁棒性、平均重叠率测试结果

    Table  5.   Test results of accuracy, robustness and average overlap rate

    编号 方法 精度/% 鲁棒性/% 平均帧速/(帧·s-1) 平均误差/%
    1 本文方法 81.90 8.580 186 7.330
    2 IVT 65.60 10.13 20 7.430
    3 Frag 43 13.99 615 10.39
    4 TLD 48 15.65 38 11.06
    5 MTT 46.80 10.13 9 11.40
    6 Struck 39.80 16.71 64 11.44
    7 L1APG 61.50 6.980 28 11.51
    8 LSK 19.74 4.000 65 11.87
    9 MIL 37.51 15.10 35 15.24
    10 DFT 76.8 14.47 115 15.29
    11 LSK 52.65 16.78 86 15.94
    12 OMA 23.82 9.670 94 16.74
    13 ASLA 48.51 22.51 66 16.80
    下载: 导出CSV
  • [1] SUPANCIC J S, RAMANAN D.Self-paced learning for long-term tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2013:2379-2386. https://www.computer.org/csdl/proceedings/cvpr/2013/4989/00/4989c379.pdf
    [2] WU Y, LIM J, YANG M H.Online object tracking:A benchmark[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway, NJ:IEEE Press, 2013:2411-2418. http://ieeexplore.ieee.org/document/6619156/
    [3] GRABNER H, BISCHOF H.On-line boosting and vision[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway, NJ:IEEE Press, 2006:260-267. http://ieeexplore.ieee.org/document/1640768/
    [4] BABENKO B, YANG M H, BELONGIE S.Visual tracking with online multiple instance learning[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway, NJ:IEEE Press, 2009:983-990. http://ieeexplore.ieee.org/document/5206737/
    [5] HARE S, GOLODETZ S, SAFFARI A, et al.Struck:Structured output tracking with kernels[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10):2096-2109. doi: 10.1109/TPAMI.2015.2509974
    [6] ROSS D A, LIM J, LIN R S, et al.Incremental learning for robust visual tracking[J].International Journal of Computer Version, 2008, 77(1-3):125-141. doi: 10.1007/s11263-007-0075-7
    [7] MEI X, LING H.Robust visual tracking and vehicle classification via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11):2259-2272. doi: 10.1109/TPAMI.2011.66
    [8] LIU B, HUANG J, KULIKOWSKI C, et al.Robust visual tracking using local sparse appearance model and k-selection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12):2968-2981. doi: 10.1109/TPAMI.2012.215
    [9] LI M, MA F, NIAN F.Robust visual tracking via appearance modeling and sparse representation[J].Journal of Computers, 2014, 9(7):1612-1619. 10.4304/jcp.9.7.1612-1619
    [10] HUA Y, ALAHARI K, SCHMID C.Occlusion and motion reasoning for long-term tracking[C]//Proceedings of European Conference on Computer Vision.Berlin:Springer Verlag, 2014:172-187. doi: 10.1007/978-3-319-10599-4_12
    [11] BROX T, MALIK J.Object segmentation by long term analysis of point trajectories[C]//Proceedings of European Conference on Computer Vision.Berlin:Springer Verlag, 2010:282-295. https://dl.acm.org/citation.cfm?id=1888173
    [12] BROX T, MALIK J.Large displacement opticalow:Descriptor matching in variational motion estimation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3):510-513. http://ieeexplore.ieee.org/document/5551149/
    [13] FIASCHI L, DIEGO F, GREGOR K, et al.Tracking indistinguishable translucent objects over time using weakly supervised structured learning[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway, NJ:IEEE Press, 2014:2736-2743. http://ieeexplore.ieee.org/document/6909746/
    [14] BERCLAZ J, FLEURET F, TURETKEN E, et al.Multiple object tracking using k-shortest paths optimization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(9):1806-1819. doi: 10.1109/TPAMI.2011.21
    [15] KALAL Z, MIKOLAJCZYK K, MATAS J.Tracking-learning-detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7):1409-1422. doi: 10.1109/TPAMI.2011.239
    [16] JIA X, LU H, YANG M H.Visual tracking via adaptive structural local sparse appearance model[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway, NJ:IEEE Press, 2012:1822-1829. http://ieeexplore.ieee.org/document/6247880/
    [17] PATNAIK R.Distortion-invariant kernel correlation lters for general object recognition[D].Pittsburgh:Carnegie Mellon University, 2009. https://dl.acm.org/citation.cfm?id=1751269
    [18] GRABNER H, LEISTNER C, BISCHOF H.Semi-supervised on-line boosting for robust tracking[C]//Proceedings of European Conference on Computer Vision.Berlin:Springer Verlag, 2008:234-247. doi: 10.1007/978-3-540-88682-2_19
    [19] BABENKO B, YANG M H, BELONGIE S.Robust object tracking with online multiple instance learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1619-1632. doi: 10.1109/TPAMI.2010.226
    [20] KWON J, LEEK M.Visual tracking decomposition[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway, NJ:IEEE Press, 2010:1269-1276. http://ieeexplore.ieee.org/document/5539821/
    [21] HAN Z J, YE Q X, JIAO J B.Robust visual object tracking via sparse representation and reconstruction[C]//Proceedings of International Conference on Computer Analysis of Images and Patterns.Berlin:Springer Verlag, 2013:282-289. doi: 10.1007/978-3-642-40246-3_35
    [22] KALAL Z, MATAS J, MIKOLAJCZYK K.PN learning:Bootstrapping binary classifiers by structural constraints[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway, NJ:IEEE Press, 2010:49-56. http://ieeexplore.ieee.org/document/5540231/
    [23] 石武祯, 梅林, 王文斐, 等.面向复杂场景的局部分布场跟踪方法[J].计算机辅助设计与图形学学报, 2014, 26(11):2031-2038. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jsjf201411015&dbname=CJFD&dbcode=CJFQ

    SHI W Z, MEI L, WANG W F, et al.Local distribution fields for tracking in complex scenarios[J].Journal of Computer-Aided Design & Computer Graphics, 2014, 26(11):2031-2038(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jsjf201411015&dbname=CJFD&dbcode=CJFQ
    [24] ZHANG T, GHANEM B, LIU S, et al.Robust visual tracking via multi-task sparse learning[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway, NJ:IEEE Press, 2012:2042-2049. doi: 10.1007/s11263-012-0582-z
    [25] DINH T B, VO N, MEDIONI G.Context tracker:Exploring supporters and distracters in unconstrained environments[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway, NJ:IEEE Press, 2011:1177-1184. http://ieeexplore.ieee.org/document/5995733/
    [26] BOLME D S, BEVERIDGE J R, DRAPER B A, et al.Visual object tracking using adaptive correlation filters[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway, NJ:IEEE Press, 2011:2544-2550. http://ieeexplore.ieee.org/document/5539960/
    [27] ZHANG K, ZHANG L, YANG M H.Real-time compressive tracking[C]//Proceedings of European Conference on Computer Vision.Berlin:Springer Verlag, 2012:864-877. doi: 10.1007/978-3-642-33712-3_62
    [28] HENRIQUES J, CASEIRO R, MARTINS P, et al.Exploiting the circulant structure of tracking-by-detection with kernels[C]//Proceedings of European Conference on Computer Vision.Berlin:Springer Verlag, 2012:702-715. doi: 10.1007/978-3-642-33765-9_50
    [29] CEHOVIN L, KRISTAN M, LEONARDIS A.Robust visual tracking using an adaptive coupledlayer visual model[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4):941-953. doi: 10.1109/TPAMI.2012.145
    [30] BAO C, WU Y, LING H, et al.Real time robust tracker using accelerated proximal gradient approach[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway, NJ:IEEE Press, 2012:1830-1837. http://ieeexplore.ieee.org/document/6247881/
    [31] LIU B, HUANG J, YANG L, et al.Robust tracking using local sparse appearance model and k-selection[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway, NJ:IEEE Press, 2011:1313-1320. http://ieeexplore.ieee.org/document/5995730/
    [32] HENRIQUES J F, CASEIRO R, MARTINS P, et al.High-speed tracking with kernelized correlation filters[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(7):583-596. http://core.ac.uk/download/pdf/25022720.pdf
    [33] SEVILLA-LARA L, LEARNED-MILLER E.Distribution elds for tracking[C]//Proceedings of IEEE International Conference on Advanced Video and Signal Based Surveillance-AVSS 2015.Piscataway, NJ:IEEE Press, 2015:474-479. http://ieeexplore.ieee.org/document/6247891/
    [34] KWON J, LEE K M.Tracking by sampling trackers[C]//Proceedings of the IEEE International Conference on Computer Vision, International Conference on Computer Vision.Piscataway, NJ:IEEE Press, 2011:1195-1202. http://ieeexplore.ieee.org/document/6126369/
    [35] HONG S, KWAK S, HAN B.Orderless tracking through model-averaged posterior estimation[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway, NJ:IEEE Press, 2013:2296-2303. http://ieeexplore.ieee.org/document/6751396/
    [36] GU S, ZHENG Y, TOMASI C.Linear time offline tracking and lower envelope algorithms[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway, NJ:IEEE Press, 2011:1840-1846. http://ieeexplore.ieee.org/document/6126451/
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  410
  • HTML全文浏览量:  9
  • PDF下载量:  396
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-01
  • 录用日期:  2017-02-24
  • 刊出日期:  2017-12-20

目录

    /

    返回文章
    返回
    常见问答