留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向气热耦合的涡轮叶片计算域模型建模方法

王添 席平 胡毕富 李吉星 石晓飞

王添, 席平, 胡毕富, 等 . 面向气热耦合的涡轮叶片计算域模型建模方法[J]. 北京航空航天大学学报, 2019, 45(1): 74-82. doi: 10.13700/j.bh.1001-5965.2018.0197
引用本文: 王添, 席平, 胡毕富, 等 . 面向气热耦合的涡轮叶片计算域模型建模方法[J]. 北京航空航天大学学报, 2019, 45(1): 74-82. doi: 10.13700/j.bh.1001-5965.2018.0197
WANG Tian, XI Ping, HU Bifu, et al. A conjugated heat transfer oriented modeling method of turbine blade computational domain model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 74-82. doi: 10.13700/j.bh.1001-5965.2018.0197(in Chinese)
Citation: WANG Tian, XI Ping, HU Bifu, et al. A conjugated heat transfer oriented modeling method of turbine blade computational domain model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 74-82. doi: 10.13700/j.bh.1001-5965.2018.0197(in Chinese)

面向气热耦合的涡轮叶片计算域模型建模方法

doi: 10.13700/j.bh.1001-5965.2018.0197
详细信息
    作者简介:

    王添  男, 博士研究生。主要研究方向:数字化设计与分析一体化、复杂曲线曲面造型

    席平  女, 博士, 教授, 博士生导师。主要研究方向:CAD/CAM、飞行器数字化技术

    通讯作者:

    席平, E-mail: xiping@buaa.edu.cn

  • 中图分类号: TP391.7;V232.4

A conjugated heat transfer oriented modeling method of turbine blade computational domain model

More Information
  • 摘要:

    针对冷却结构复杂的涡轮叶片在气热耦合数值模拟中计算域模型建模效率低、模型质量不稳定以及对数值模拟适应性差等问题,分析面向制造的涡轮叶片模型及建模方法,结合气热耦合数值模拟对涡轮叶片数值模拟的实际需求,提出一种面向气热耦合的涡轮叶片计算域建模方法。通过外型冷却特征自动定位生成算法,创建涡轮叶片冷气域部分;通过自适应管道求交算法、边界自动匹配算法,创建能够适应不同叶型的涡轮叶片燃气域部分;此外,在创建流体域的过程中提取气热耦合数值模拟所需的关键几何特征及非几何信息,并与冷气域、燃气域、叶片实体集成,完成气热耦合计算域模型的生成。基于以上研究开发涡轮叶片气热耦合计算域模型快速建模系统,验证所提方法的有效性。

     

  • 图 1  叶片内型实体建模与特征关系树

    Figure 1.  Blade interior solid modeling and feature relationship tree

    图 2  叶片外型实体建模与特征关系树

    Figure 2.  Blade exterior solid modeling and feature relationship tree

    图 3  叶片实体建模与特征关系树

    Figure 3.  Blade solid modeling and feature relationship tree

    图 4  传统气热耦合数值模拟计算域模型建模方法

    Figure 4.  Traditional modeling method of conjugated heat transfer numerical simulation computational domain model

    图 5  面向气热耦合的涡轮叶片计算域建模方案

    Figure 5.  Conjugated heat transfer oriented modeling scheme of turbine blade computational domain

    图 6  冷气域几何模型

    Figure 6.  Geometric model of cooling air fluid domain

    图 7  冷气域模型构建流程

    Figure 7.  Flowchart of cooling air fluid domain modeling

    图 8  气膜孔设计及相关参数示意

    Figure 8.  Schematic diagram of film hole design and related parameters

    图 9  气膜孔设计角度与建模角度转换关系

    Figure 9.  Conversion relationship between film hole design angle and modeling angle

    图 10  气膜孔“反相”实体生成方法

    Figure 10.  Method for generating inverted entities for film holes

    图 11  叶片中各类曲线示意图

    Figure 11.  Schematic diagram of various types of curves in blade

    图 12  管道半径试算示意图

    Figure 12.  Schematic diagram of pipeline radius trial

    图 13  管道求交中弧线自动生成

    Figure 13.  Automatic generation of pipeline intersection mean camber line

    图 14  燃气域几何模型

    Figure 14.  Geometric model of gas fluid domain

    图 15  面向气热耦合的涡轮叶片计算域模型快速建模

    Figure 15.  Conjugated heat transfer oriented rapid modeling of turbine blade computational domain models

  • [1] 《航空发动机设计手册》总编委会.航空发动机设计手册, 第10册:涡轮[M].北京:航空工业出版社, 2001:11.

    Aero-engine Design Handbook Editorial Board.Aero engine design handbook, Volume10:Turbine[M].Beijing:Aviation Industry Press, 2001:11(in Chinese).
    [2] DOWNS J P, LANDIS K K.Turbine cooling systems design: Past, present and future[C]//ASME Turbo Expo 2009: Power for Land, Sea, and Air.New York: ASME, 2009: 819-828. http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1646950
    [3] 朱莉娅, 徐国强.涡轮冷却技术对航空发动机性能的影响[J].推进技术, 2014, 35(6):793-798. http://d.old.wanfangdata.com.cn/Periodical/tjjs201406011

    ZHU L Y, XU G Q.Effect of turbine cooling technology on aeroengine performance[J].Propulsion Technology, 2014, 35(6):793-798(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201406011
    [4] 曹玉璋.航空发动机传热学[M].北京:北京航空航天大学出版社, 2005:57.

    CAO Y Z.Aeroengine heat transfer[M].Beijng:Beihang University Press, 2005:57(in Chinese).
    [5] 吴大观.航空发动机研制工作论文集[M].北京:航空工业出版社, 2009:69.

    WU D G.Aerospace development work paper collection[M].Beijing:Aviation Industry Press, 2009:69(in Chinese).
    [6] 王潘, 隋岩峰, 程农.涡扇发动机整机仿真平台设计及实现方法[J].系统仿真学报, 2014, 26(5):986-990. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201405005

    WANG P, SUI Y F, CHENG N.Design and implementation of turbofan engine simulation patform[J].Journal of System Simulation, 2014, 26(5):986-990(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201405005
    [7] DEES J E, BOGARD D G, LEDEZMA G A, et al.Overall and adiabatic effectiveness values on a scaled up, simulated gas turbine vane[J].Journal of Turbomachinery-Transactions of the ASME, 2013, 135(5):595-605. http://turbomachinery.asmedigitalcollection.asme.org/article.aspx?articleid=1702964
    [8] 迟重然, 温风波, 王松涛, 等.涡轮动叶冷却结构设计方法Ⅲ:气热耦合计算[J].工程热物理学报, 2011, 32(9):1485-1488. http://cdmd.cnki.com.cn/Article/CDMD-10213-1012000775.htm

    CHI Z R, WEN F B, WANG S T, et al.Turbine blade cooling structure design method Ⅲ:Conjugated heat transfer numerical simulation[J].Journal of Engineering Thermophysics, 2011, 32(9):1485-1488(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10213-1012000775.htm
    [9] KUSTERER K, HAGEDORN T, BOHN D, et al.Improvement of a film-cooled blade by application of the conjugate calculation technique[J].Journal of Turbomachinery, 2006, 128(3):572-578. doi: 10.1115/1.2183314
    [10] 叶莹.气冷涡轮流热耦合模拟及冷却结构优化设计[D].北京: 中国科学院大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-80135-1017085823.htm

    YE Y.Conjugated heat transfer numerical simulation of air-cooled turbine flow and optimal design of cooling structure[D].Beijing: University of Chinese Academy of Sciences, 2017(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-80135-1017085823.htm
    [11] 王松涛, 迟重然, 温风波, 等.涡轮动叶冷却结构设计方法Ⅰ:参数化设计[J].工程热物理学报, 2011, 32(4):581-584. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201104012.htm

    WANG S T, CHI Z R, WEN F B, et al.Turbine blade cooling structure design method Ⅰ:Parametric design[J].Journal of Engineering Thermophysics, 2011, 32(4):581-584(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201104012.htm
    [12] 虞跨海, 李立州, 岳珠峰.基于解析及特征造型的涡轮冷却叶片参数化设计[J].推进技术, 2007, 28(6):637-640. doi: 10.3321/j.issn:1001-4055.2007.06.010

    YU K H, LI L Z, YUE Z F.Parametric design of turbine cooling blades based on analytic and characteristic modeling[J].Propulsion Technology, 2007, 28(6):637-640(in Chinese). doi: 10.3321/j.issn:1001-4055.2007.06.010
    [13] 宋玉旺, 席平.基于特征造型技术的涡轮叶片参数化设计[J].北京航空航天大学学报, 2004, 30(4):321-324. doi: 10.3969/j.issn.1001-5965.2004.04.009

    SONG Y W, XI P.Parametric design of turbine blade based on feature modeling[J].Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(4):321-324(in Chinese). doi: 10.3969/j.issn.1001-5965.2004.04.009
    [14] 李吉星, 席平.涡轮叶片导管快速建模[J].北京航空航天大学学报, 2016, 42(6):1149-1155. http://bhxb.buaa.edu.cn/CN/abstract/abstract13966.shtml

    LI J X, XI P.Rapid modeling of impingement pipe in turbine blade[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6):1149-1155(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13966.shtml
    [15] NOWAK G, WRÓBLEWSKI W.Optimization of blade cooling system with use of conjugate heat transfer approach[J].International Journal of Thermal Sciences, 2011, 50(9):1770-1781. doi: 10.1016/j.ijthermalsci.2011.04.001
    [16] 罗磊, 卢少鹏, 迟重然, 等.气热耦合条件下涡轮动叶叶型与冷却结构优化[J].推进技术, 2014, 35(5):603-609. http://d.old.wanfangdata.com.cn/Periodical/tjjs201405005

    LUO L, LU S P, CHI Z R, et al.Conjugate heat transfer optimization for blade profiles and cooling structure in turbine rotor[J].Advance Technology, 2014, 35(5):603-609(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201405005
    [17] 付光辉, 席平, 张宝源, 等.涡轮气冷叶片传热分析数据提取技术研究[J].图学学报, 2015, 36(3):384-391. doi: 10.3969/j.issn.2095-302X.2015.03.010

    FU G H, XI P, ZHANG B Y, et al.Data extraction technology for heat transfer analysis of air-cooled turbine blades[J].Journal of Graphics, 2015, 36(3):384-391(in Chinese). doi: 10.3969/j.issn.2095-302X.2015.03.010
    [18] 席平, 王添.面向分析的产品建模技术概述[J].航空制造技术, 2017, 540(21):16-20. http://d.old.wanfangdata.com.cn/Periodical/hkgyjs201721001

    XI P, WANG T.An analysis-oriented product modeling technology[J].Aeronautical Manufacturing Technology, 2017, 540(21):16-20(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkgyjs201721001
    [19] 龚勋.涡轮冷却叶片结构网格参数化方法研究[D].南京: 南京航空航天大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10287-1016925538.htm

    GONG X.Research on parameterization method of turbine cooling blade structure grid[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2016(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-1016925538.htm
    [20] CHI Z R, LIU H Q, ZANG S S.Geometrical optimization of nonuniform impingement cooling structure with variable-diameter jet holes[J].International Journal of Heat & Mass Transfer, 2017, 108:549-560. https://www.sciencedirect.com/science/article/pii/S0017931016321081
  • 加载中
图(15)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  11
  • PDF下载量:  493
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-10
  • 录用日期:  2018-05-18
  • 刊出日期:  2019-01-20

目录

    /

    返回文章
    返回
    常见问答