留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆弧翼型跨声速流动的动态模态分析

胡万林 于剑 刘宏康 阎超

胡万林, 于剑, 刘宏康, 等 . 圆弧翼型跨声速流动的动态模态分析[J]. 北京航空航天大学学报, 2019, 45(5): 1026-1032. doi: 10.13700/j.bh.1001-5965.2018.0468
引用本文: 胡万林, 于剑, 刘宏康, 等 . 圆弧翼型跨声速流动的动态模态分析[J]. 北京航空航天大学学报, 2019, 45(5): 1026-1032. doi: 10.13700/j.bh.1001-5965.2018.0468
HU Wanlin, YU Jian, LIU Hongkang, et al. Dynamic modal analysis of circular-arc airfoil transonic flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 1026-1032. doi: 10.13700/j.bh.1001-5965.2018.0468(in Chinese)
Citation: HU Wanlin, YU Jian, LIU Hongkang, et al. Dynamic modal analysis of circular-arc airfoil transonic flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 1026-1032. doi: 10.13700/j.bh.1001-5965.2018.0468(in Chinese)

圆弧翼型跨声速流动的动态模态分析

doi: 10.13700/j.bh.1001-5965.2018.0468
基金项目: 

国家自然科学基金 11721202

国家自然科学基金 11402016

详细信息
    作者简介:

    胡万林  男, 硕士研究生。主要研究方向:计算流体力学、流动控制

    阎超  男, 博士, 教授, 博士生导师。主要研究方向:计算流体力学

    通讯作者:

    阎超.E-mail:yanchao@buaa.edu.cn

  • 中图分类号: V211.3

Dynamic modal analysis of circular-arc airfoil transonic flow

Funds: 

National Natural Science Foundation of China 11721202

National Natural Science Foundation of China 11402016

More Information
  • 摘要:

    跨声速翼型的激波周期性自激振荡会给机翼结构带来附加的脉动载荷,从而加剧飞行器表面结构的疲劳损伤。使用动态模态分解(DMD)方法研究了跨声速下绕厚度18%的对称双圆弧翼型的压力脉动场,分析了DMD提取的各阶主模态的频率特征、压力脉动的空间分布以及压力脉动随激波振荡的时间演化过程,并使用DMD模态进行流场重构。结果表明,DMD方法能准确捕捉流场各特征频率的模态,第1阶模态是激波抖振的主频,在激波的自激振荡过程中占主导作用,前7阶模态重构的流场损失函数降低至4%以内,误差主要分布于激波间断处。

     

  • 图 1  对称双圆弧翼型壁面及对称面网格

    Figure 1.  Symmetric circular-arc airfoil wall and symmetry plane mesh

    图 2  壁面压力系数分布

    Figure 2.  Wall pressure coefficient distribution

    图 3  升力系数功率谱密度

    Figure 3.  Lift coefficient power spectral density

    图 4  频率与增长率/衰减率的关系

    Figure 4.  Relationship of frequency with growth rate/decay rate

    图 5  DMD的Ritz值和模态能量与频率关系

    Figure 5.  Relationship of Ritz value and mode energy with frequency of DMD

    图 6  DMD前4阶模态系数随时间的变化及其功率谱密度曲线

    Figure 6.  Variation of coefficient of the first four modes of DMD with time and its power spectral density curves

    图 7  DMD模态的空间分布

    Figure 7.  Spatial distribution of DMD modes

    图 8  翼型对称面数值纹影图与DMD第3阶模态不同时刻空间分布

    Figure 8.  Numerical schlieren of symmetry plane of airfoil and spatial distribution of third-order mode of DMD at different moments

    图 9  损失函数随模态数目的变化

    Figure 9.  Variation of loss function with number of modes

    图 10  流场重构的均方根误差

    Figure 10.  Root mean square errors of flow reconstruction

    图 11  测点压力随时间的变化

    Figure 11.  Variation of observation point pressure with time

  • [1] 张伟伟, 高传强, 叶正寅.机翼跨声速抖振研究进展[J].航空学报, 2015, 36(4):1056-1075. http://d.old.wanfangdata.com.cn/Periodical/hkxb201504003

    ZHANG W W, GAO C Q, YE Z Y.Research advances of wing/airfoil transic buffet[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1056-1075(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201504003
    [2] MCDEVITT J B, LEVY J R, DEIWERT G S.Transonic flow about a thick circular-arc airfoil[J].AIAA Journal, 1976, 14(5):606-613. doi: 10.2514/3.61402
    [3] TIJDEMAN H, SEEBASS R.Transonic flow past oscillating airfoils[J].Annual Review of Fluid Mechanics, 1980, 12:181-222. doi: 10.1146/annurev.fl.12.010180.001145
    [4] LEE B.Self-sustained shock oscillations on airfoils at transonic speeds[J].Progress in Aerospace Sciences, 2001, 37(2):147-196. doi: 10.1016/S0376-0421(01)00003-3
    [5] JACQUIN L, MOLTON P, DECK S, et al.Experimental study of shock oscillation over a transonic supercritical profile[J].AIAA Journal, 2009, 47(9):1985-1994. doi: 10.2514/1.30190
    [6] HARTMANN A, KLAAS M.Time-resolved stereo PIV measurements of shock-boundary layer interaction on a supercritical airfoil[J].Experiments in Fluids, 2012, 52(3):591-604. doi: 10.1007/s00348-011-1074-6
    [7] CHUNG I, LEE D, REU T.Prediction of transonic buffet onset for an airfoil with shock induced separation bubble using steady Navier-Stokes solver: AIAA-2002-2934[R].Reston: AIAA, 2002.
    [8] XIAO Q, TSAI H M, LIU F.Numerical study of transonic buffet on a supercritical airfoil[J].AIAA Journal, 2006, 44(3):620-628. doi: 10.2514/1.16658
    [9] XIONG J T, LIU F, LUO S J.Computation of NACA0012 airfoil transonic buffet phenomenon with unsteady Navier-Stokes equations: AIAA-2012-0699[R].Reston: AIAA, 2012.
    [10] CHEN L W, XU C Y, LU X Y.Numerical investigation of the compressible flow past an aerofoil[J].Journal of Fluid Mechanics, 2010, 643(3):97-126. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3d33901264ee95b8b153ca9aa57361b6
    [11] ROWLEY C W, COLONIUS T, MURRAY R M, et al.Proper orthogonal decomposition of 2D compressible DNS of the flow over a rectangular cavity[C]//Division of Fluid Dynamics Meeting, 1999. https://www.researchgate.net/publication/241459502_Proper_Orthogonal_Decomposition_of_2D_Compressible_DNS_of_the_Flow_over_a_Rectangular_Cavity
    [12] SCHMID P J.Dynamic mode decomposition of numerical and experimental data[J].Journal of Fluid Mechanics, 2010, 656(10):5-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=86e320c2177fab6ec697bff47e21f19e
    [13] 潘翀, 陈皇, 王晋军.复杂流场的动力学模态分解[C]//第八届全国实验流体力学学术会议论文集.广州: 中国科学院南海海洋研究所, 2010: 77-82. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7385271

    PAN C, CHEN H, WANG J J.Dynamical mode decomposition of complex flow field[C]//8th National Conference on Experimental Fluid Mechanics.Guangzhou: South China Sea Institute of Oceanology, 2010: 77-82(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7385271
    [14] LIU H K, YAN C, ZHAO Y T, et al.Analysis of pressure fluctuation in transonic cavity flows using modal decomposition[J].Aerospace Science & Technology, 2018, 77:819-835. http://cn.bing.com/academic/profile?id=6a43bd13bec26250d46c52dbba298909&encoded=0&v=paper_preview&mkt=zh-cn
    [15] 寇家庆, 张伟伟, 高传强.基于POD和DMD方法的跨声速抖振模态分析[J].航空学报, 2016, 37(9):2679-2689. http://d.old.wanfangdata.com.cn/Periodical/hkxb201609006

    KOU J Q, ZHANG W W, GAO C Q.Modal analysis of transonic buffet based on POD and DMD method[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2679-2689(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201609006
    [16] SPEZIALE C G, ABID R, ANDERSON E C.Critical evaluation of two-equation models for near-wall turbulence[J].AIAA Jornal, 1992, 30(2):324-331. doi: 10.2514/3.10922
    [17] SPALART P R, DECK S, SHUR M L, et al.A new version of detached-eddy simulation, resistant to ambiguous grid densties[J].Theoretical and Computational Fluid Dynamics, 2006, 20:181-195. doi: 10.1007/s00162-006-0015-0
    [18] VAN LEER B.Towards the ultimate conservative difference scheme.V.A second-order sequel to Godunov's method[J].Journal of Computational Physics, 1979, 32(1):101-136. http://cn.bing.com/academic/profile?id=907f30ef6e5df9eef5ecc13efba96f1d&encoded=0&v=paper_preview&mkt=zh-cn
    [19] YOON S, JAMESON A.Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J].AIAA Journal, 1988, 26(9):1025-1026. doi: 10.2514/3.10007
    [20] JAMESON A.Time dependent calculations using multigrid with applications to unsteady flows past airfoils and wings: AIAA 1991-1596[R].Reston: AIAA, 1991.
    [21] ROWLEY C W, MEZI C, BAGHERI S, et al.Spectral analysis of nonlinear flows[J].Journal of Fluid Mechanics, 2009, 641(1):115-127. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1303.2790
    [22] CHEN K K, TU J H, ROWLEY C W.Variants of dynamic mode decomposition:Boundary condition, Koopman, and Fourier analyses[J].Journal of Nonlinear Science, 2012, 22(6):887-915. doi: 10.1007/s00332-012-9130-9
    [23] JOVANOVIC M R, SCHMID P J, NICHOLS J W.Sparsity-promoting dynamic mode decomposition[J].Physics of Fluids, 2014, 26(2):561-571. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232399655/
  • 加载中
图(11)
计量
  • 文章访问数:  427
  • HTML全文浏览量:  6
  • PDF下载量:  418
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-10
  • 录用日期:  2018-12-21
  • 刊出日期:  2019-05-20

目录

    /

    返回文章
    返回
    常见问答