留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于降阶模型的翼型结冰冰形预测方法

刘藤 李栋 黄冉冉 张振辉

刘藤, 李栋, 黄冉冉, 等 . 基于降阶模型的翼型结冰冰形预测方法[J]. 北京航空航天大学学报, 2019, 45(5): 1033-1041. doi: 10.13700/j.bh.1001-5965.2018.0474
引用本文: 刘藤, 李栋, 黄冉冉, 等 . 基于降阶模型的翼型结冰冰形预测方法[J]. 北京航空航天大学学报, 2019, 45(5): 1033-1041. doi: 10.13700/j.bh.1001-5965.2018.0474
LIU Teng, LI Dong, HUANG Ranran, et al. Ice shape prediction method of aero-icing based on reduced order model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 1033-1041. doi: 10.13700/j.bh.1001-5965.2018.0474(in Chinese)
Citation: LIU Teng, LI Dong, HUANG Ranran, et al. Ice shape prediction method of aero-icing based on reduced order model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 1033-1041. doi: 10.13700/j.bh.1001-5965.2018.0474(in Chinese)

基于降阶模型的翼型结冰冰形预测方法

doi: 10.13700/j.bh.1001-5965.2018.0474
详细信息
    作者简介:

    刘藤  男, 硕士研究生。主要研究方向:计算流体力学

    李栋  男, 博士, 教授, 博士生导师。主要研究方向:设计空气动力学、计算流体力学

    通讯作者:

    李栋.E-mail:ldgh@nwpu.edu.cn

  • 中图分类号: V211+.3

Ice shape prediction method of aero-icing based on reduced order model

More Information
  • 摘要:

    翼型结冰冰形的数值模拟预测通常比较复杂耗时,为了更加快速准确地预测冰形以减少计算资源消耗,建立了基于本征正交分解(POD)和Kriging模型的冰形快速预测方法。利用CFD数值模拟结果来构建样本空间,以飞行迎角为例详述了降阶模型的冰形预测的实现手段,并结合试验设计方法,完成了多参数的结冰冰形快速预测,同时研究了先进的Blind-Kriging模型的相关方法以及对于预测结果的改进。结果表明,降阶模型预测翼型结冰冰形与CFD数值模拟结果吻合较好,表明降阶模型可以快速、精确地应用于翼型结冰冰形预测。

     

  • 图 1  降阶模型建立流程

    Figure 1.  Reduced order model building process

    图 2  FENSAP-ICE软件模块相互关系

    Figure 2.  Relationship among FENSAP-ICE software modules

    图 3  FENSAP-ICE冰形模拟结果

    Figure 3.  FENSAP-ICE ice shape simulation results

    图 4  冰形模拟与实验对比验证

    Figure 4.  Comparison and validation of ice shape simulation and experiment

    图 5  不同飞行迎角的冰形

    Figure 5.  Ice shapes of different flying attack angles

    图 6  单参数POD与CFD冰形对比

    Figure 6.  Ice shape comparison between single-parameter POD and CFD

    图 7  连续最大结冰条件[21]

    Figure 7.  Continuous maximum icing condition[21]

    图 8  样本空间分布

    Figure 8.  Sample space distribution

    图 9  多参数POD与CFD冰形对比

    Figure 9.  Ice shape comparison of multiparameter' POD and CFD

    图 10  冰形预测结果对比

    Figure 10.  Comparison of ice shape prediction results

    表  1  算例计算条件

    Table  1.   Calculation conditions of example

    计算状态 数值
    来流速度/(m·s-1) 100
    液态水含量(LWC)/(g·m-3) 1
    平均水滴直径(MVD)/μm 20
    环境压力/Pa 101 325
    结冰温度/K 263.15
    结冰时间/s 360
    下载: 导出CSV

    表  2  快照矩阵特征值

    Table  2.   Eigenvalue of snapshot matrix

    特征值序号 λx/10-6 λy/10-6
    1 174 832 6 10 328.48
    2 8.937 12 20.761 14
    3 3.189 29 5.440 25
    4 1.121 569 1.452 005
    5 0.613 951 0.556 798
    下载: 导出CSV

    表  3  多参数样本选择范围

    Table  3.   Selection range for multiparameter sample

    参数 最小值 最大值
    飞行迎角/(°) 0 5
    飞行速度/(m·s-1) 90 130
    结冰温度/°F -22 +32
    MVD/μm 15 40
    高度/ft 0 22 000
    下载: 导出CSV

    表  4  验证算例计算条件

    Table  4.   Calculation conditions of verification example

    算例状态 数值
    飞行迎角/(°) 1.325
    飞行速度/(m·s-1) 91.875
    MVD/μm 25.5
    高度/ft 12 031
    结冰温度/°F 16
    结冰时间/s 360
    下载: 导出CSV

    表  5  计算状态

    Table  5.   Calculation conditions

    计算状态 数值
    MVD/μm 20
    环境压力/Pa 101 325
    结冰温度/K 263.15
    结冰时间/s 360
    下载: 导出CSV
  • [1] 蒋天俊.结冰对飞机飞行性能影响的研究[D].南京: 南京航空航天大学, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D052562

    JIANG T J.Investigation of icing accretion influences on aircraft flight performance[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D052562
    [2] 姚若鹏.翼型的结冰数值模拟及相关控制研究[D].南京: 南京航空航天大学, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D280454

    YAO R P.The numerical simulation of ice accretion on airfoil and control research[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D280454
    [3] 杨胜华.二维飞机结冰过程仿真[D].北京: 北京航空航天大学, 2010.

    YANG S H.Two-dimensional in-flight ice accretion simulation[D].Beijing: Beihang University, 2010(in Chinese).
    [4] 申晓斌, 郁嘉, 林贵平, 等.基于特征正交分解法的翼型结冰冰形快速预测[J].航空动力学报, 2013, 28(4):807-812. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201304012

    SHEN X B, YU J, LIN G P, et al.Fast prediction of ice shape based on proper orthogonal decomposition method[J].Journal of Aerospace Power, 2013, 28(4):807-812(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201304012
    [5] GALLIVAN K, GRIMME E, VAN DOOREN P.Pade approximation of large-scale dynamics systems with lanczos methods[C]//Proceedings of the 33rd IEEE Conference on Decision and Control.Piscataway, NJ: IEEE Press, 1994: 443-448.
    [6] CAMUSSI R, GUJ G.Orthonormal wavelet decomposition of turbulent flows:Intermittency and coherent structures[J].Journal of Fluid Mechanics, 1997, 348:177-199. doi: 10.1017/S0022112097006551
    [7] AUBRY N, GUYONNET R, LIMA R.Spatio-temporal analysis of complex signals:Theory and applications[J].Journal of Statistical Physics, 1981, 64(3-4):683-739. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_03617a40a464dfac680a19bf9e3f0390
    [8] HOLMES P, LUMLEY J L, BERKOOZ G.Turbulence, coherent structures, dynamical systems and symmetry[M].Cambridge:Cambridge University Press, 1996:68-100.
    [9] VOLKWEIN S.Proper orthogonal decomposition for nonlinear dynamical systems[EB/OL].Graz: University of Graz, 2005[2018-08-14] http://www.math.unikonstanz.de/numerik/personen/volkwein/PhDSchools/Volkwein_Part1.pdf.
    [10] NAKAKITA K, HABASHI W G, NADARAJAH S.Toward real-time aero-icing simulation using reduced order models[J].Journal of Aircraft, 2010, 47(1):96-115. doi: 10.2514/1.44077
    [11] 葛宜元.试验设计方法与Design-Expert软件应用[M].哈尔滨:哈尔滨工业大学出版社, 2015:2-3.

    GE Y Y.Experimental design method and Design-Expert software application[M].Harbin:Harbin Institute of Technology Press, 2015:2-3(in Chinese).
    [12] MCKAY M D, BECKMAN R J, CONOVER W J.A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J].Technometrics, 1979, 21(2):239-245. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00401706.2000.10485979
    [13] MORRIS M D, MITCHELL T J.Exploratory designs for computational experiments[J].Journal of Statistical Planning and Inference, 1995, 43(3):381-402. doi: 10.1016/0378-3758(94)00035-T
    [14] 丁鹏, 陶文诠.建立低阶模型的POD方法[J].工程热物理学报, 2009, 30(6):1019-1021. doi: 10.3321/j.issn:0253-231X.2009.06.032

    DING P, TAO W Q.Reduced order modeling with the proper orthogonal decomposition[J].Journal of Engineering Thermo Physics, 2009, 30(6):1019-1021(in Chinese). doi: 10.3321/j.issn:0253-231X.2009.06.032
    [15] KERSCHEN G, GOLINVAL J, VAKAKIS A F, et al.The method of proper orthogonal de-composition for dynamical characterization and order reduction of mechanical sys-tems:An overview[J].Nonlinear Dynamics, 2005, 41(1-3):147-169. doi: 10.1007/s11071-005-2803-2
    [16] SIROVICH L.Turbulence and the dynamics of coherent structures.Ⅰ-Coherent structures.Ⅱ-Symmetries and transformations.Ⅲ-Dynamics and scaling[J].Quarterly of Applied Mathematics, 1987, 45(3):561-571. doi: 10.1090/qam/1987-45-03
    [17] KRIGE D G.A statistical approach to some basic mine valuation problems on the Witwatersrand[J].Journal of the Southern African Institute of Mining and Metallurgy, 1951, 52(6):119-139. http://cn.bing.com/academic/profile?id=e1a44ecdde7f607d72aaed1e53da62c9&encoded=0&v=paper_preview&mkt=zh-cn
    [18] 韩忠华.Kriging模型及代理优化算法研究进展[J].航空学报, 2016, 37(11):3197-3225. http://d.old.wanfangdata.com.cn/Periodical/hkxb201611001

    HAN Z H.Kriging surrogate model and its application to design optimization:A review of recent progress[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201611001
    [19] HÉLOÏSE B, FRANÇOIS M, WAGDI G H.FENSAP-ICE's three-dimensional in-flight ice accretion module:ICE3D[J].Journal of Aircraft, 2003, 40(2):239-247. doi: 10.2514/2.3113
    [20] JEONG S, OBAYASHI S, YAMAMOTO K.Aerodynamic optimization design with kriging model[J].Transactions of the Japan Society for Aeronautical and Space Sciences, 2005, 48(161):161-168. doi: 10.2322/tjsass.48.161
    [21] JECK R K.Icing Design Envelopes(14 CFR Parts 25 and 29, Appenddix C)Converted to a Distance-Based Format: DOT/FAA/AR-00/30[R].Washington, D.C.: FAA, 2002.
    [22] JOSEPH V R, HUNG Y, SUDJANTO A.Blind Kriging:A new method for developing metamodels[J].Journal of Mechanical Design, 2008, 130(3):350-353. doi: 10.1115-1.2829873/
    [23] COUCKUYT I, FORRESTER A, GORISSEN D, et al.Blind Kriging:Implementation and performance analysis[J].Advances in Engineering Software, 2012, 49:1-13. doi: 10.1016/j.advengsoft.2012.03.002
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  438
  • HTML全文浏览量:  16
  • PDF下载量:  404
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-14
  • 录用日期:  2018-12-28
  • 刊出日期:  2019-05-20

目录

    /

    返回文章
    返回
    常见问答