留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于智能优化算法和有限元法的多线圈均匀磁场优化设计

吕志峰 张金生 王仕成 赵欣 李婷

吕志峰, 张金生, 王仕成, 等 . 基于智能优化算法和有限元法的多线圈均匀磁场优化设计[J]. 北京航空航天大学学报, 2019, 45(5): 980-988. doi: 10.13700/j.bh.1001-5965.2018.0524
引用本文: 吕志峰, 张金生, 王仕成, 等 . 基于智能优化算法和有限元法的多线圈均匀磁场优化设计[J]. 北京航空航天大学学报, 2019, 45(5): 980-988. doi: 10.13700/j.bh.1001-5965.2018.0524
LYU Zhifeng, ZHANG Jinsheng, WANG Shicheng, et al. Optimal design of multi-coil system for generating uniform magnetic field based on intelligent optimization algorithm and finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 980-988. doi: 10.13700/j.bh.1001-5965.2018.0524(in Chinese)
Citation: LYU Zhifeng, ZHANG Jinsheng, WANG Shicheng, et al. Optimal design of multi-coil system for generating uniform magnetic field based on intelligent optimization algorithm and finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 980-988. doi: 10.13700/j.bh.1001-5965.2018.0524(in Chinese)

基于智能优化算法和有限元法的多线圈均匀磁场优化设计

doi: 10.13700/j.bh.1001-5965.2018.0524
基金项目: 

国家自然科学基金 11602296

国家自然科学基金 61503393

详细信息
    作者简介:

    吕志峰  男, 博士研究生。主要研究方向:地磁导航及其半实物仿真系统, 导航、制导与仿真

    王仕成  男, 博士, 教授, 博士生导师。主要研究方向:导航、制导与仿真

    通讯作者:

    王仕成, E-mail:wshcheng@vip.163.com

  • 中图分类号:  V216.5+1;TL62+2

Optimal design of multi-coil system for generating uniform magnetic field based on intelligent optimization algorithm and finite element method

Funds: 

National Natural Science Foundation of China 11602296

National Natural Science Foundation of China 61503393

  • 摘要:

    针对多线圈均匀磁场优化设计中的高阶求导及优化结果可信度评估问题,提出一种基于智能优化算法和有限元法相结合的多线圈均匀磁场优化设计方法。首先,确定待优化参数,并以磁场偏差率作为目标函数;然后,采用智能优化算法对目标函数进行寻优;最后,基于优化得到的结构参数,建立相应的有限元仿真模型,检验优化结果的可信度。以2组亥姆霍兹线圈的结构参数优化为例,仿真结果表明,本文方法求得的最优参数优于传统的求导方法寻优得到的参数,且经过有限元法检验后,该优化结果的可信度得到了确认。

     

  • 图 1  单个方形载流线圈

    Figure 1.  Single square current-carrying coil

    图 2  方形亥姆霍兹线圈示意图

    Figure 2.  Schematic diagram of square Helmholtz coil

    图 3  两组方形亥姆霍兹线圈示意图

    Figure 3.  Schematic diagram of two sets of square Helmholtz coils

    图 4  参数优化流程图

    Figure 4.  Flowchart of parameter optimization

    图 5  两种参数情况磁场分布均匀性对比

    Figure 5.  Comparison of magnetic field distribution uniformity between two different parameters

    图 6  两组亥姆霍兹线圈三维数值仿真模型

    Figure 6.  Three-dimensional numerical simulation models of two sets of Helmholtz coils

    图 7  不同平面磁场分布

    Figure 7.  Magnetic field distribution in different planes

    图 8  z轴磁场分布

    Figure 8.  Magnetic field distribution in z axis

    表  1  单组线圈中心轴线磁场偏差率

    Table  1.   Magnetic field deviation rate of single set of coils along central axis

    轴线长度/m 磁场偏差率
    本文方法 传统求导方法
    0.2 0.001 03 0.001 26
    0.4 0.017 02 0.017 85
    0.6 0.072 79 0.074 35
    0.8 0.177 05 0.179 13
    1 0.311 80 0.313 98
    下载: 导出CSV

    表  2  本文方法与传统求导方法的结构参数

    Table  2.   Structural parameters of proposed method and traditional derivation method

    结构参数 本文方法 传统求导方法
    l/m 0.5 0.5
    a1/m 0.147 1 0.128 1
    a2/m 0.551 5 0.505 5
    N1 70 64
    N2 150 150
    I/A 0.1 0.097 48
    下载: 导出CSV

    表  3  两组线圈中心轴线磁场偏差率

    Table  3.   Magnetic field deviation rate of two sets of coils along central axis

    轴线长度/m 磁场偏差率
    本文方法 传统求导方法
    0.2 1.847 1×10-5 1.261 6×10-4
    0.4 6.552 9×10-5 6.298 4×10-4
    0.6 2.685 1×10-4 0.003 9
    0.8 0.006 4 0.020 7
    1 0.035 6 0.070 2
    下载: 导出CSV

    表  4  有限元仿真计算得到的磁场偏差率

    Table  4.   Magnetic field deviation rate calculated by finite element simulation

    轴线长度/m 磁场偏差率
    本文方法 传统求导方法
    0.2 8.326 8×10-5 9.240 8×10-5
    0.4 3.236 3×10-4 3.740 1×10-4
    0.6 3.964 2×10-4 0.001 7
    0.8 0.005 6 0.017 4
    1 0.035 9 0.067 8
    下载: 导出CSV
  • [1] BATISTA D S, GRANZIERA F, TOSIN M C, et al.Three-axial Helmholtz coil design and validation for aerospace applications[J].IEEE Transactions on Aerospace & Electronic Systems, 2018, 54(1):392-403.
    [2] HURTADO-VELASCO R, GONZALEZ-LLORENTE J.Simulation of the magnetic field generated by square shape Helmholtz coils[J].Applied Mathematical Modelling, 2016, 40(23-24):9835-9847. doi: 10.1016/j.apm.2016.06.027
    [3] 吕志峰, 张金生, 王仕成, 等.高精度地磁场模拟系统的设计与研究[J].宇航学报, 2014, 35(11):1284-1290. doi: 10.3873/j.issn.1000-1328.2014.11.009

    LV Z F, ZHANG J S, WANG S C, et al.Design and research of high-accuracy geomagnetic field intensity simulation system[J].Journal of Astronautics, 2014, 35(11):1284-1290(in Chinese). doi: 10.3873/j.issn.1000-1328.2014.11.009
    [4] 吕志峰, 贺浩, 张金生, 等.仿真地磁的磁场模拟装置[J].电光与控制, 2014, 21(6):76-80. doi: 10.3969/j.issn.1671-637X.2014.06.017

    LÜ Z F, HE H, ZHANG J S, et al.A magnetic field generating device used for simulation of magnetic field[J].Electronics Optics & Control, 2014, 21(6):76-80(in Chinese). doi: 10.3969/j.issn.1671-637X.2014.06.017
    [5] 侯兴哲, 余慈拱, 付志红, 等.单层方体四线圈均匀磁场源理论计算与仿真[J].磁性材料及器件, 2013, 44(5):8-11. doi: 10.3969/j.issn.1001-3830.2013.05.003

    HOU X Z, YU C G, FU Z H, et al.Theoretical calculation and simulation of homogeneous magnetic field source of monolayer four square[J].Journal of Magnetic Materials and Devices, 2013, 44(5):8-11(in Chinese). doi: 10.3969/j.issn.1001-3830.2013.05.003
    [6] 黄松涛, 张伟, 张鹏飞, 等.基于亥姆霍兹线圈的大尺寸均匀电磁场模拟[J].北京航空航天大学学报, 2015, 41(2):203-208. doi: 10.3969/j.issn.1005-4561.2015.02.052

    HUANG S T, ZHANG W, ZHANG P F, et al.Large scale uniform electromagnetic field simulation based on Helmholtz coil[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2):203-208(in Chinese). doi: 10.3969/j.issn.1005-4561.2015.02.052
    [7] 宋新昌.亥姆霍兹线圈及麦克斯韦线圈磁场分布及均匀性比较[J].磁性材料及器件, 2016, 47(5):16-18. doi: 10.3969/j.issn.1001-3830.2016.05.004

    SONG X C.Comparison of magnetic field distribution and homogeneity between Helmholtz coil and Maxwell coil[J].Journal of Magnetic Materials and Devices, 2016, 47(5):16-18(in Chinese). doi: 10.3969/j.issn.1001-3830.2016.05.004
    [8] ABBOTT J J.Parametric design of tri-axial nested Helmholtz coils[J].Review of Scientific Instruments, 2015, 86(5):054701. doi: 10.1063/1.4919400
    [9] CHEN J, WANG D, WANG Y, et al.An improved 3-D magnetic field generator with larger uniform region[J].IEEE Transactions on Applied Superconductivity, 2016, 26(7):1-5. http://cn.bing.com/academic/profile?id=219d3bb1dcc3ce55f427174da55b2ec6&encoded=0&v=paper_preview&mkt=zh-cn
    [10] BARANOVA V E, BARANOV P F, MURAVYOV S V, et al.The production of a uniform magnetic field using a system of axial coils for calibrating magnetometers[J].Measurement Techniques, 2015, 58(5):550-555. doi: 10.1007/s11018-015-0752-9
    [11] 胡朝晖, 穆维维, 吴文峰, 等.产生匀强磁场的圆柱形线圈组设计方法[J].北京航空航天大学学报, 2018, 44(3):454-461. http://bhxb.buaa.edu.cn/CN/abstract/abstract14363.shtml

    HU Z H, MU W W, WU W F, et al.Design method of cylindrical coil systems for generating uniform magnetic field[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3):454-461(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract14363.shtml
    [12] 宋新昌.Barker线圈匀强磁场分析[J].舰船电子工程, 2016, 36(6):141-145. doi: 10.3969/j.issn.1672-9730.2016.06.038

    SONG X C.Analysis of Barker magnetic field coils with high homogeneity[J].Ship Electronic Engineering, 2016, 36(6):141-145(in Chinese). doi: 10.3969/j.issn.1672-9730.2016.06.038
    [13] 王志锋, 刘大明.基于差分进化的共面矩形线圈均匀磁场优化[J].船电技术, 2012, 32(12):29-31. doi: 10.3969/j.issn.1003-4862.2012.12.009

    WANG Z F, LIU D M.Optimization of uniform field of rectangular coil by differential evolution[J].Marine Electric & Electronic Engineering, 2012, 32(12):29-31(in Chinese). doi: 10.3969/j.issn.1003-4862.2012.12.009
    [14] 徐杰, 朱显桥.一种研究系统内均匀磁场的新方法[J].舰船电子工程, 2013, 33(8):157-160. http://d.old.wanfangdata.com.cn/Periodical/jcdzgc201308052

    XU J, ZHU X Q.A new method of investigating the systemic uniform magnetic field[J].Ship Electronic Engineering, 2013, 33(8):157-160(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jcdzgc201308052
    [15] 许淼.三轴磁场模拟装置的设计[D].上海: 上海交通大学, 2012: 51-52.

    XU M.The design of three-axis magnetic field simulation device[D].Shanghai: Shanghai Jiaotong University, 2012: 51-52(in Chinese).
    [16] 刘颖玮, 胡长德, 朱砂.地磁仿真环境系统的构建[J].电子测量技术, 2010, 33(1):4-7. doi: 10.3969/j.issn.1002-7300.2010.01.002

    LIU Y W, HU C D, ZHU S.Foundation of kind of magnetic environment simultion[J].Electronic Measurement Technology, 2010, 33(1):4-7(in Chinese). doi: 10.3969/j.issn.1002-7300.2010.01.002
    [17] 余胜威.MATLAB优化算法案例分析与应用[M].北京:清华大学出版社, 2014:156-157.

    YU S W.Case analysis and application of MATLAB optimization algorithm[M].Beijing:Tsinghua University Press, 2014:156-157(in Chinese).
    [18] 陈浩, 徐敏, 谢亮, 等.保形动网格策略在CFD/CSD耦合中的应用[J].西北工业大学学报, 2015, 33(5):732-738. doi: 10.3969/j.issn.1000-2758.2015.05.005

    CHEN H, XU M, XIE L, et al.Applying shape preserving grid deformation to CFD/CSD coupling[J].Journal of Northwestern Polytechnical University, 2015, 33(5):732-738(in Chinese). doi: 10.3969/j.issn.1000-2758.2015.05.005
    [19] 武建安, 吴祖河, 王亨, 等.基于有限元仿真的磁感应肿瘤治疗设备线圈优化设计[J].清华大学学报(自然科学版), 2016, 56(4):406-410. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhdxxb201604011

    WU J A, WU Z H, WANG H, et al.Optimization of a coil design for magnetic hyperthermia treatment based on the finite element method[J].Journal of Tsinghua University(Science and Technology), 2016, 56(4):406-410(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhdxxb201604011
    [20] 任吉刚, 罗震, 李洋, 等.基于有限元的铁磁物质电阻点焊磁场分布分析[J].焊接学报, 2015, 36(8):47-50. http://d.old.wanfangdata.com.cn/Periodical/hjxb201508012

    REN J G, LUO Z, LI Y, et al.Magnetic field distributionof ferromagnetic workpieces resistance spot welding based on finite eleme[J].Transactions of the China Welding Institution, 2015, 36(8):47-50(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hjxb201508012
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  498
  • HTML全文浏览量:  12
  • PDF下载量:  535
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-05
  • 录用日期:  2018-11-23
  • 刊出日期:  2019-05-20

目录

    /

    返回文章
    返回
    常见问答