留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小通道并联管干涸热动力学特性实验

李洪伟 王亚成 洪文鹏 孙斌

李洪伟, 王亚成, 洪文鹏, 等 . 小通道并联管干涸热动力学特性实验[J]. 北京航空航天大学学报, 2019, 45(8): 1495-1503. doi: 10.13700/j.bh.1001-5965.2018.0633
引用本文: 李洪伟, 王亚成, 洪文鹏, 等 . 小通道并联管干涸热动力学特性实验[J]. 北京航空航天大学学报, 2019, 45(8): 1495-1503. doi: 10.13700/j.bh.1001-5965.2018.0633
LI Hongwei, WANG Yacheng, HONG Wenpeng, et al. Experiment on thermodynamic characteristics of parallel mini-channel tube' dryout[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1495-1503. doi: 10.13700/j.bh.1001-5965.2018.0633(in Chinese)
Citation: LI Hongwei, WANG Yacheng, HONG Wenpeng, et al. Experiment on thermodynamic characteristics of parallel mini-channel tube' dryout[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1495-1503. doi: 10.13700/j.bh.1001-5965.2018.0633(in Chinese)

小通道并联管干涸热动力学特性实验

doi: 10.13700/j.bh.1001-5965.2018.0633
基金项目: 

国家自然科学基金 51406031

吉林省科技厅基金 20160520032JH

吉林省科技厅基金 20170101123JC

详细信息
    作者简介:

    李洪伟  男, 博士, 副教授。主要研究方向:多相流参数检测、微小通道两相流传热与流动特性

    王亚成  男, 硕士研究生。主要研究方向:微小通道两相流传热与流动特性

    洪文鹏  男, 博士, 教授。主要研究方向:分布式能源、多相流参数检测

    孙斌  男, 博士, 教授。主要研究方向:多相流参数检测、纳米流体强化传热

    通讯作者:

    李洪伟, E-mail: lihongweihw@163.com

  • 中图分类号: O359.1

Experiment on thermodynamic characteristics of parallel mini-channel tube' dryout

Funds: 

National Natural Science Foundation of China 51406031

Jilin Provincial Science and Technology Agency Fund 20160520032JH

Jilin Provincial Science and Technology Agency Fund 20170101123JC

More Information
  • 摘要:

    针对小通道并联管在沸腾传热过程中传热不稳定的问题,对小通道并联管在干涸时的热动力学特性进行研究。首先,通过观察小通道并联管内干涸点前后流型的转变,将流型分成环状预警区、干涸初始点区和雾状干涸区3个区域。对3个流型下并联通道沸腾传热过程中通道内工质干度和传热系数的变化进行分析,发现随着干涸的发展,通道沸腾传热系数下降明显。然后,对通道3个流型下的压降信号,通过自适应最优核时频表示法(AOK-TFR)、自回归(AR)模型功率谱分析法和递归图分析法进行分析,发现在干涸初始点区,通道内反复出现干涸现象,且回流现象严重。最后,通过对递归图分析法中特性参数归纳总结,得到干涸初始点区与环状预警区、雾状干涸区的区别,实现通过压降信号检测干涸的目的。研究结果可对小通道沸腾传热领域中的热动力学特性进行补充和完善。

     

  • 图 1  实验段结构示意图

    Figure 1.  Schematic diagram of experimental section structure

    图 2  实验段实物图

    Figure 2.  Photo of experimental section

    图 3  小通道并联管结构示意图

    Figure 3.  Schematic diagram of parallel mini-channel tube structure

    图 4  实验装置

    Figure 4.  Experimental device

    图 5  小通道并联管流型图

    Figure 5.  Flow pattern of mini-channel parallel tube

    图 6  工质进出口温差

    Figure 6.  Temperature difference of working medium between entrance and exit

    图 7  不同区域内制冷剂干度分布

    Figure 7.  Dryness distribution of refrigerant in different regions

    图 8  不同区域内制冷剂传热系数分布

    Figure 8.  Distribution of heat transfer coefficient of refrigerant in different regions

    图 9  AOK-TFR处理后的频谱图

    Figure 9.  Spectrogram based on AOK-TFR

    图 10  自回归模型功率谱分析

    Figure 10.  AR power spectrum analysis

    图 11  递归图分析

    Figure 11.  Recurrence plots analysis

    图 12  基于递归图分析法的特性参数分布

    Figure 12.  Distribution of characteristic parameters based on recurrence plots analysis method

    表  1  R141b制冷剂物性参数

    Table  1.   Physical properties of R141b refrigerant

    参数 沸点/℃ 分子量 比热/(kJ·(kg·℃)-1) 密度/(g·cm-3) 蒸发潜热/(kJ·kg-1)
    数值 32.05 116.95 1.16 1.227 233.0
    下载: 导出CSV
  • [1] 葛洋, 姜未汀.微通道换热器的研究及应用现状[J].化工进展, 2016, 35(s1):10-15. http://d.old.wanfangdata.com.cn/Periodical/hgjz2016z1003

    GE Y, JIANG W T.The research progress and application of the micro-channel heat exchanger[J].Chemical Industry and Engineering Progress, 2016, 35(s1):10-15(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hgjz2016z1003
    [2] LIU Z, BI Q, YANG Z, et al.Critical heat flux of cyclohexane in uniformly heated minichannels with high inlet subcooling[J].Experimental Thermal and Fluid Science, 2015, 63:106-114. doi: 10.1016/j.expthermflusci.2015.01.012
    [3] WU Z, LI W.A new predictive tool for saturated critical heat flux in micro/mini-channels:Effect of the heated length-to-diameter ratio[J].International Journal of Heat and Mass Transfer, 2011, 54(13):2880-2889. http://cn.bing.com/academic/profile?id=bd1743cb07382333dc6fea442a7b205e&encoded=0&v=paper_preview&mkt=zh-cn
    [4] 彭传新, 陈炳德, 卓文彬, 等.自然循环临界热流密度实验现象及分析[J].核动力工程, 2017, 38(3):7-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hdlgc201703002

    PENG C X, CHEN B D, ZHUO W B, et al.Phenomenon and analysis of natural circulation CHF[J].Nuclear Power Engineering, 2017, 38(3):7-11(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hdlgc201703002
    [5] 宗露香, 徐进良, 刘国华.微通道内流动沸腾不稳定性影响因素实验研究[J].高校化学工程学报, 2015, 29(1):90-95. doi: 10.3969/j.issn.1003-9015.2015.01.013

    ZONG L X, XU J L, LIU G H.Experimental study on the flowboiling instability governing parameters in microchannel[J].Journal of Chemical Engineering of Chinese Universities, 2015, 29(1):90-95(in Chinese). doi: 10.3969/j.issn.1003-9015.2015.01.013
    [6] 杜保周, 孔令健, 郭保仓, 等.微肋阵通道内流动沸腾CHF特性[J].化工学报, 2018, 69(5):1989-1998. http://d.old.wanfangdata.com.cn/Periodical/hgxb201805022

    DU B Z, KONG L J, GUO B C, et al.Critical heat flux characteristics during flow boiling in a micro channel with micro pin fins[J].CIESC Journal, 2018, 69(5):1989-1998(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hgxb201805022
    [7] 毛宇飞, 郭烈锦, 白博峰, 等.螺旋管内高压汽水两相流动沸腾干涸点的研究[J].工程热物理学报, 2011, 32(7):1145-1148. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201107016

    MAO Y F, GUO L J, BAI B F, et al.Experimental investigation on the dryout point for two-phase flow boiling of steam-water at high pressures in helical coils[J].Journal of Engineering Thermophysics, 2011, 32(7):1145-1148(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201107016
    [8] SHEN Z, SHI J, GAN Y, et al.Simulation of dryout phenomenon and transient heat transfer performance of the once-through steam generator based on heat transfer partition[J].Annals of Nuclear Energy, 2018, 115:268-279. doi: 10.1016/j.anucene.2018.01.045
    [9] JIANG L, LIU J, ZHANG L, et al.A research on the dryout characteristics of CO2'S flow boiling heat transfer process in mini-channels[J].International Journal of Refrigeration, 2017, 83:131-142. doi: 10.1016/j.ijrefrig.2017.07.017
    [10] SHI J, SUN B, YU X, et al.Modeling the full-range thermal-hydraulic characteristics and post-dryout deviation from thermodynamic equilibrium in once-through steam generators[J].International Journal of Heat and Mass Transfer, 2017, 109:266-277. doi: 10.1016/j.ijheatmasstransfer.2017.02.007
    [11] STATHAM B A, NOVOG D R.The effects of transient conditions on the onset of intermittent dryout during blowdown[J].Nuclear Engineering and Design, 2017, 317:118-132. doi: 10.1016/j.nucengdes.2017.02.025
    [12] BAO H, GUO Y, LIU S, et al.Experimental study on the dryout point and post-dryout heat transfer in square channel[J].Fusion Engineering and Design, 2018, 136(B):1012-1018. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=48492f1fe82e93e55a9fd75a7cfc7925
    [13] DALKILIÇA S, ÖZMAN C, SAKAMATAPAN K, et al.Experimental investigation on the flow boiling of R134a in a multi-microchannel heat sink[J].International Communications in Heat and Mass Transfer, 2018, 91:125-137. doi: 10.1016/j.icheatmasstransfer.2017.12.008
    [14] QU W, MUDAWAR I.Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks[J].International Journal of Heat and Mass Transfer, 2004, 47(10-11):2045-2059. doi: 10.1016/j.ijheatmasstransfer.2003.12.006
    [15] ECKMANN J P, KAMPHORST S O, RUELLE D.Recurrence plots of dynamical systems[J].Europhysics Letters, 1987, 4 (9):973-977. doi: 10.1209/0295-5075/4/9/004
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  630
  • HTML全文浏览量:  93
  • PDF下载量:  324
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-05
  • 录用日期:  2019-02-25
  • 网络出版日期:  2019-08-20

目录

    /

    返回文章
    返回
    常见问答