-
摘要:
空间目标的逆合成孔径雷达(ISAR)成像由于受自身遮挡及噪声干扰等影响,导致生成的ISAR像难以直接进行图像分析及目标识别。由此,以空间目标的ISAR成像建模为基础对ISAR像处理及特征提取展开了研究。首先,分别建立了目标卫星的ISAR成像模型、ISAR信号模型及ISAR图像函数提取模型,并经过旁瓣抑制与相干斑滤波等初步处理得到了目标卫星的ISAR像。其次,采用Otsu算法、canny算子及Hough变换使卫星旋转至最长轴平行于像平面横轴,通过闭运算填充卫星内部孔洞,去除外部孤立噪声,并基于连通域思想分割出卫星所在子区域,实现了卫星的轮廓提取。所设计的图像处理算法能有效改善ISAR像质量,提取的卫星轮廓线能较好地勾勒出目标卫星的外形结构,为进一步展开卫星的识别工作奠定了重要基础。
-
关键词:
- 空间目标 /
- 逆合成孔径雷达(ISAR) /
- ISAR成像 /
- 图像处理 /
- 轮廓特征
Abstract:The inverse synthetic aperture radar (ISAR) imaging of the space target is affected by target's own occlusion and noise interference, which makes the generated ISAR image difficult to be directly used for image analysis and target recognition. Therefore, the ISAR image processing and feature extraction are studied based on the ISAR imaging model of the space target. Firstly, the ISAR imaging model, ISAR signal model and ISAR image extraction model of the target satellite are established respectively, and the ISAR image of the target satellite is obtained through preliminary processing such as sidelobe suppression and speckle filtering. Secondly, the Otsu algorithm, the canny operator and the Hough transform are used to rotate the satellite to the longest axis parallel to the horizontal axis of the image plane. The closed operation method is used to fill the internal cavity of the satellite and remove the external isolated noise region. Based on the connected domain idea, the sub-area where the satellite is located is segmented, and the contour extraction of the satellite is realized. The designed image processing algorithm can effectively improve the ISAR image quality, and the extracted satellite contour can well outline the shape of the target satellite, which lays an important foundation for further satellite identification.
-
-
[1] TOUMI A, HOELTZENER B, KHENCHAF A.Hierarchical segmentation on ISAR image for target recognition[J].International Journal of Computational Intelligence Research, 2009, 5(1):63-71. http://cn.bing.com/academic/profile?id=5457c6d36e57b0170566d264f0e347bd&encoded=0&v=paper_preview&mkt=zh-cn [2] BENEDETTO F, FULGINEI F, RLAUDANI A, et al.Automatic aircraft target recognition by ISAR image processing based on neural classifier[J]. International Journal of Advanced Computer Science and Applications, 2012, 3(8):96-103. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_fd0e48ce6383fed57c4ac297680419f7 [3] ASGHARI M H, JALALI B.Edge detection in digital images using dispersive phase stretch transform[J].International Journal of Biomedical Imaging, 2015, 2015:687819. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2f305f8e988eeaa76d84a9761f3e303a [4] STANKOVIC L.ISAR image analysis and recovery with unavailable or heavily corrupted data[J].IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3):2093-2106. doi: 10.1109/TAES.2015.140413 [5] LEE S J, BAE J H, KANG B S, et al.Classification of ISAR images using sparse recovery algorithms[C]//IEEE Conference on Antenna Measurements & Applications.Piscataway, NJ: IEEE Press, 2014: 1-4. [6] 唐宁, 高勋章, 黎湘.ISAR像自动识别中的预处理算法[J].系统工程与电子技术, 2011, 33(9):2002-2006. doi: 10.3969/j.issn.1001-506X.2011.09.16TANG N, GAO X Z, LI X.Preprocessing algorithm for ISAR image automatic recognition[J].Systems Engineering and Electronics Technology, 2011, 33(9):2002-2006(in Chinese). doi: 10.3969/j.issn.1001-506X.2011.09.16 [7] MUSMAN S, KERR D, BACHMANN C.Automatic recognition of ISAR ship images[J].IEEE Transactions of Aerospace and Electronic Systems, 1996, 32(4):1392-1404. doi: 10.1109/7.543860 [8] BACHMANN C M, MUSMAN S A, SCHULTZ A.Classification of simulated radar imagery using lateral inhibition neural networks[C]//Neural Networks for Signal Processing.Piscataway, NJ: IEEE Press, 1992: 279-288. [9] ZELJKOVIC V, LI Q, VINCELETTE R, et al.Automatic algorithm for inverse synthetic aperture radar images recognition and classification[J].IET Radar Sonar Navigation, 2010, 4(1):96-109. doi: 10.1049/iet-rsn.2009.0112 [10] JDEY I, TOUMI A, DHIBI M, et al.The contribution of fusion techniques in the recognition systems of radar targets[C]//IET International Conference on Radar Systems.London: IET, 2012: 1-5. [11] 唐宁, 高勋章, 黎湘.基于几何散列法的ISAR像自动目标识别[J].系统工程与电子技术, 2012, 34(4):692-697. doi: 10.3969/j.issn.1001-506X.2012.04.10TANG N, GAO X Z, LI X.Automatic target recognition of ISAR images based on geometric hash[J].Systems Engineering and Electronic Technology, 2012, 34(4):692-697(in Chinese). doi: 10.3969/j.issn.1001-506X.2012.04.10 [12] TANG N, GAO X Z, LI X.Target classification of ISAR images based on feature space optimization of local non-negative matrix factorisation[J].IET Signal Processing, 2012, 6(5):494-502. doi: 10.1049/iet-spr.2011.0286 [13] 李飞.雷达图像目标特征提取方法研究[D].西安: 西安电子科技大学, 2014: 25-100. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D551838LI F.Study on target feature extraction based on radar image[D].Xi'an: Xidian University, 2014: 25-100(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D551838 [14] 王欣.基于酉ESPRIT的超分辨ISAR成像及其应用[D].西安: 西安电子科技大学, 2015: 31-74. http://cdmd.cnki.com.cn/Article/CDMD-10701-1016006285.htmWANG X.Unitary ESPRIT based on superresolution ISAR imaging and its application[D].Xi'an: Xidian university, 2015: 31-74(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10701-1016006285.htm [15] 王芳, 盛卫星, 马晓峰, 等.基于直方图统计量的逆合成孔径雷达目标识别[J].电波科学学报, 2012, 27(4):92-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201204357483WANG F, SHENG W X, MA X F, et al.Target clarification for ISAR image based on histogram statistics[J].Journal of Radio Science, 2012, 27(4):92-98(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201204357483 [16] 王芳, 盛卫星, 马晓峰, 等.基于B(2D)2PGNMF的ISAR像目标识别[J].南京理工大学学报(自然科学版), 2013, 37(6):863-868. doi: 10.3969/j.issn.1005-9830.2013.06.014WANG F, SHENG W X, MA X F, et al.ISAR image target recognition based on B(2D)2PGNMF[J].Journal of Nanjing University of Science and Technology(Natural Science), 2013, 37(6):863-868(in Chinese). doi: 10.3969/j.issn.1005-9830.2013.06.014 [17] 王芳, 盛卫星, 马晓峰, 等.基于Gabor幅值特征和相位特征相融合的ISAR像目标识别[J].电子与信息学报, 2013, 35(8):1813-1819. http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201308006WANG F, SHENG W X, MA X F, et al.ISAR image recognition with fusion of Gabor magnitude and phase feature[J].Journal of Electronics & Information Technology, 2013, 35(8):1813-1819(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201308006 -