留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微型探头-传感系统高频响应特性模型适应性

丁红兵 李一鸣 李金霞 王超

丁红兵, 李一鸣, 李金霞, 等 . 微型探头-传感系统高频响应特性模型适应性[J]. 北京航空航天大学学报, 2019, 45(8): 1519-1528. doi: 10.13700/j.bh.1001-5965.2019.0104
引用本文: 丁红兵, 李一鸣, 李金霞, 等 . 微型探头-传感系统高频响应特性模型适应性[J]. 北京航空航天大学学报, 2019, 45(8): 1519-1528. doi: 10.13700/j.bh.1001-5965.2019.0104
DING Hongbing, LI Yiming, LI Jinxia, et al. Adaptability of high-frequency response characteristic model for micro probe-transducer system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1519-1528. doi: 10.13700/j.bh.1001-5965.2019.0104(in Chinese)
Citation: DING Hongbing, LI Yiming, LI Jinxia, et al. Adaptability of high-frequency response characteristic model for micro probe-transducer system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1519-1528. doi: 10.13700/j.bh.1001-5965.2019.0104(in Chinese)

微型探头-传感系统高频响应特性模型适应性

doi: 10.13700/j.bh.1001-5965.2019.0104
基金项目: 

国家自然科学基金 51876143

国家自然科学基金 61873184

国家自然科学基金 61627803

天津市自然科学基金 16JCQNJC03700

详细信息
    作者简介:

    丁红兵  男, 博士, 副教授。主要研究方向:多相流测量、气体

    王超  男, 博士, 教授。主要研究方向:电学层析成像、多相流测量和生物阻抗检测

  • 中图分类号: TP212

Adaptability of high-frequency response characteristic model for micro probe-transducer system

Funds: 

National Natural Science Foundation of China 51876143

National Natural Science Foundation of China 61873184

National Natural Science Foundation of China 61627803

Natural Science Foundation of Tianjin 16JCQNJC03700

  • 摘要:

    为了拓宽微型探头-传感系统的可用频带,满足高频压力信号的测量需求,需对系统的频率响应特性进行研究,并分析现有数学模型对不同结构微型探头-传感系统的适用性及预测精度。对5种典型结构的微型探头-传感系统进行了判定和划分,综述了现有微型探头-传感系统的频响预测模型、假设条件及模型修正方法。为对理论数学模型进行定量评价,计算得到了不同结构微型探头-传感系统的谐振频率、截止频率和工作频带(幅值误差±5%),并与数值仿真和实验结果进行了对比。结果表明:对于引压管较短的谐振腔,利用Panton模型计算其谐振频率,误差可控制在1%以内;对于引压管较长及带有测压孔的结构,B-T模型的预测精度最高。对实验用微型探头-传感系统进行了优化设计,并用于超声速凝结自激振荡现象的研究。结果表明:优化的微型探头-传感系统频响特性可满足高频(约10 kHz)压力波动信号的动态测量需求。

     

  • 图 1  微型探头-传感系统基本结构

    Figure 1.  Basic structure of micro probe-transducer system

    图 2  微型探头-传感系统网格

    Figure 2.  Grid of micro probe-transducer system

    图 3  正弦激励法和阶跃激励法CFD数值仿真结果

    Figure 3.  CFD simulation results of sine and step excitation methods

    图 4  Qnn的变化趋势

    Figure 4.  Variation of Qn with n

    图 5  实验和CFD数值仿真得到的频响特性曲线

    Figure 5.  Frequency response characteristic curves obtained by experiment and CFD simulation

    图 6  微型探头-传感系统的幅频特性曲线

    Figure 6.  Amplitude-frequency characteristic curve ofmicro probe-transducer system

    图 7  不同l/d条件下的谐振频率

    Figure 7.  Resonant frequency under different l/d

    图 8  声速喷嘴尺寸

    Figure 8.  Size of sonic nozzle

    图 9  凝结自激振荡频域信号

    Figure 9.  Signal of self-excited oscillation in frequency domain

    表  1  微型探头-传感系统典型结构

    Table  1.   Typical structures of micro probe-transducer system

    结构 特征 示意图 ωn/(rad·s-1)
    谐振腔模型,引压管长度非常小
    腔室终端十分小,与引压管相比,终端腔室的影响可忽略
    腔室长度远小于引压管长度,可将终端腔室作为集中参数处理
    与引压管相比,腔室长度较长,不能忽略腔室长度影响
    引压管与待测管路连接时,有一定的测压孔节流
    下载: 导出CSV

    表  2  微型探头-传感系统数学模型

    Table  2.   Mathematical models of micro probe-transducer system

    模型 频响特性 参数表达式 假设条件
    不可压缩一阶系统模型[17] 管道内流体不可压缩;腔室内流体可压缩,流速及惯性质量忽略不计;管道内流动为层流,摩擦阻力符合泊肃叶定律
    不可压缩二阶系统模型[17]
    无损耗模型[17] 管道内流体可压缩;忽略由于流体黏性引起的能量损耗和与外界的热传导
    线性摩擦模型[17] 管道内流体可压缩;腔室内流体可压缩,流速及惯性质量忽略不计
    耗散模型[17] 管道内流体可压缩;腔室内流体可压缩,流速及惯性质量忽略不计;考虑流动的非稳定性、流体的黏性损耗和与外界的热交换
    B-T(Bergh-Tijdeman)模型[17] 正弦波波动非常小;系统内流动为层流
    下载: 导出CSV

    表  3  微型探头-传感系统尺寸

    Table  3.   Size of micro probe-transducer systems

    结构 l0/mm r0/mm l/mm r/mm L/mm R/mm
    25 1
    25 1 1 1.5
    25 1 10 1.5
    20 1 20 2 1 2.5
    下载: 导出CSV

    表  4  4种预测模型的截止频率计算结果及误差

    Table  4.   Cut-off frequency computational result and error of four prediction models

    类型 结构 fb0/Hz fb1/Hz fb2/Hz fb3/Hz fb4/Hz σf1/% σf2/% σf3/% σf4/%
    CFD 5742.5 4251.3 6932.5 6939.8 6701.0 25.97 20.72 20.85 16.69
    5108.7 3845.7 5900.1 5881.3 5579.6 24.72 15.49 15.12 9.22
    2947.1 2852.9 3018.3 2980.2 2611.4 3.20 2.42 1.12 11.39
    1741.1 1761.1 1.15
    实验 [22] 24.25 21.17 22.06 22.21 23.02 12.70 9.03 8.41 5.07
    [14] 116.54 157.72 156.61 152.95 146.10 35.34 34.38 31.24 25.36
    [14] 170.92 179.53 5.04
    下载: 导出CSV

    表  5  4种预测模型的工作频带计算结果及误差

    Table  5.   Working frequency band computational result and error of four prediction models

    类型 结构 fg0/Hz fg1/Hz fg2/Hz fg3/Hz fg4/Hz σf1/% σf2/% σf3/% σf4/%
    CFD 666.4 656.0 684.8 684.8 684.7 1.56 2.76 2.76 2.75
    622.5 593.4 630.4 627.3 611.8 4.67 1.27 0.77 1.72
    383.4 440.2 408.6 398.3 364.1 14.81 6.57 3.89 5.03
    250.8 240.8 3.99
    实验 [22] 3.43 3.34 3.50 3.50 3.50 2.62 2.04 2.04 2.04
    [14] 24.51 29.37 29.91 28.81 20.37 19.83 22.03 17.54 16.89
    [14] 16.14 14.01 13.20
    下载: 导出CSV

    表  6  Panton模型谐振频率实验与预测结果对比[24]

    Table  6.   Comparison of measured and predicted resonant frequencies with Panton model[24]

    l/d fexp/Hz f1/Hz f2/Hz f3/Hz σf1/% σf2/% σf3/%
    0.31 1319 1320 1357 1951 0.08 2.88 47.92
    2552 2557 2626 3775 0.20 2.90 47.92
    4434 4439 4562 6558 0.11 2.89 47.90
    0.42 980 990 989 1191 1.02 0.92 21.53
    2775 2780 2803 3371 0.18 1.01 21.48
    3666 3691 3701 4451 0.68 0.95 21.41
    0.63 252 254 252 268 0.79 0 6.35
    3238 3228 3242 3443 0.31 0.12 6.33
    4845 4824 4851 5153 0.43 0.12 6.36
    下载: 导出CSV

    表  7  微型探头-传感系统不同结构对各模型的适应性

    Table  7.   Adaptability of different micro probe-transducer system structures to various models

    结构 适用模型
    对引压管长进行修正后,用Panton模型计算其谐振频率。工程实际中,可利用模型简化后的经典公式或改进公式,但当l/d < 0.42,即管长较短时,经典公式的误差较大。如果需要精确计算,则使用模型的原始公式
    在工程中,可利用四分之一波长理论公式计算其谐振频率;如果精确计算其频率特性,可选择B-T模型
    当粗略估算最低阶共振频率时,可选择不可压缩二阶系统模型;而当精确计算时,可选择线性摩擦模型、耗散模型和B-T模型。其中,线性摩擦模型适用于低频扰动情况,B-T模型精度最高
    Ⅳ、Ⅴ 结构IV可看作结构V腔室体积为0时的一种特殊情况,利用B-T模型计算
    下载: 导出CSV

    表  8  微型探头-传感系统尺寸及闭环截止频率

    Table  8.   Size and closed-loop cut-off frequency of micro probe-transducer system

    r0/mm l0/mm r/mm l/mm V/mm3 fb/Hz
    0.3 4 0.5 2.5 0.23 12860
    0.3 5 0.5 1.5 0.23 13958
    0.3 5 0.4 1.5 0.23 16441
    0.3 6 0.5 0.5 0.23 17125
    0.3 6 0.5 0.5 0.11 18271
    0.6 4 0.8 2.5 1.57 15024
    0.6 5 0.8 1.5 1.57 15661
    0.6 5 0.9 1.5 1.57 14547
    0.6 5 0.9 1.5 0.94 15374
    0.6 5 0.9 1.5 0 16870
    0.6 6 0.9 0.5 0.90 18287
    0.9 4 1.1 2.5 1.23 17857
    0.9 4 1.3 2.5 1.23 15343
    0.9 5 1.1 1.5 1.23 18844
    0.9 5 1.1 1.5 2.46 17571
    下载: 导出CSV
  • [1] 王庆伟, 刘波, 侯为民, 等.压气机转子叶片表面动态压力测量的探索[J].航空动力学报, 2010, 25(10):2327-2332. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201010027

    WANG Q W, LIU B, HOU W M, et al.Tentative research about pressure measurement on one point of compressor rotor blade surface[J].Journal of Aerospace Power, 2010, 25(10):2327-2332(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201010027
    [2] WANG X, WANG X N, REN X, et al.Effects of tube system and data correction for fluctuating pressure test in wind tunnel[J].Chinese Journal of Aeronautics, 2018, 31(4):710-718. doi: 10.1016/j.cja.2018.01.021
    [3] KUTIN J, SVETE A.On the theory of the frequency response of gas and liquid pressure measurement systems with connecting tubes[J].Measurement Science and Technology, 2018, 29:125108. doi: 10.1088/1361-6501/aae884
    [4] 马宏伟, 魏巍, 张良, 等.欠频响压力探针测量压气机动态流场的结果分析[J].航空发动机, 2016, 42(2):67-72. http://d.old.wanfangdata.com.cn/Periodical/hkfdj201602013

    MA H W, WEI W, ZHANG L, et al.Analysis of measured unsteady flow field using a quasi fast response pressure probe[J].Aircraft Engine, 2016, 42(2):67-72(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkfdj201602013
    [5] 李炜, 邓勇生, 赵中兵.固体火箭发动机用高频响压力传感器设计[J].固体火箭技术, 2018, 41(4):532-536. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201804023

    LI W, DENG Y S, ZHAO Z B.Design of high frequency pressure sensor for solid rocket motor[J].Solid Rocket Technology, 2018, 41(4):532-536(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gthjjs201804023
    [6] FAN L T, TO T C, HIRAOKA S, et al.Pressure fluctuations in a fluidized bed[J].Aiche Journal, 1981, 27(3):388-396. doi: 10.1002/aic.690270308
    [7] YATES J G, SIMONS S J R.Experimental methods in fluidization research[J].International Journal of Multiphase Flow, 1994, 20(8):297-330. http://cn.bing.com/academic/profile?id=d2bc6c36ddde79a0bfe053b7184f8e21&encoded=0&v=paper_preview&mkt=zh-cn
    [8] ANTONINI C, PERSICO G, ROWE A L.Prediction of the dynamic response of complex transmission line systems for unsteady pressure measurements[J].Measurement Science and Technology, 2008, 19(12):125401. doi: 10.1088/0957-0233/19/12/125401
    [9] 柳兆荣, 陈金娥, 黄东群.压力传感器频率响应的分析[J].力学学报, 1980, 16(4):40-49. http://cdmd.cnki.com.cn/Article/CDMD-10110-2007139205.htm

    LIU Z R, CHEN J E, HUANG D Q.An analysis of frequency responses of pressure transducer[J].Journal of Mechanics, 1980, 16(4):40-49(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10110-2007139205.htm
    [10] 叶挺, 梁庭, 张文栋.压力测试中引压管的动态特性研究[J].中北大学学报(自然科学版), 2011, 32(2):222-226. doi: 10.3969/j.issn.1673-3193.2011.02.021

    YE T, LIANG T, ZHANG W D.Dynamic characteristic of transmission tube in pressure measurement system[J].Journal of North University of China(Natural Science Edition), 2011, 32(2):222-226(in Chinese). doi: 10.3969/j.issn.1673-3193.2011.02.021
    [11] 黄俊钦.压力传感器动态数学模型研究[J].计量学报, 1987, 8(3):35-41. http://d.old.wanfangdata.com.cn/Conference/192935

    HUANG J Q.Research for dynamic mathematical model of pressure transducer[J].Acta Metrologica Sinica, 1987, 8(3):35-41(in Chinese). http://d.old.wanfangdata.com.cn/Conference/192935
    [12] GOODSON R E, LEONARD R G.A survey of modeling techniques for fluid line transients[J].Journal of Basic Engineering, 1972, 94(2):474-482. doi: 10.1115/1.3425453
    [13] IBERALL A S.Attenuation ofoscillatory pressures in instrument lines 1[J].Journal of Research of the National Bureau of Standards, 1950, 45(1):276-277.
    [14] BERGH H, TIJDEMAN H.Theoretical and experimental results of dynamic response of pressure measuring system: NLR-TR F.238[R].Amsterdam: NLR, 1965: 1-19.
    [15] RICHARDS W B.Propagation of sound waves in tubes of noncircular cross section NASA: NASA-TP-2601[R].Washington, D.C.: NASA, 1986.
    [16] 胡寿松.自动控制原理[M].4版.北京:科学出版社, 2001:187-228.

    HU S S.Automatic control theory[M].4th ed.Beijing:Science Press, 2001:187-228(in Chinese).
    [17] 朱明武.动压测量[M].北京:国防工业出版社, 1983:243-282.

    ZHU M W.Dynamic pressure measurement[M].Beijing:National Defense Industry Press, 1983:243-282(in Chinese).
    [18] SEMAAN R, SCHOLZ P.Pressure correction schemes and the use of the Wiener deconvolution method in pneumatic systems with short tubes[J].Experiments in Fluids, 2012, 53(3):829-837. doi: 10.1007/s00348-012-1332-2
    [19] ANDERSON R C, ENGLAND D V.Liquid-filled transient pressure measuring system: A method for determining frequency response: NASA TN D-6603[R].Washington, D.C.: NASA, 1971.
    [20] CHEN T S, LJUNG L.Implementation of algorithms for tuning parameters in regularized least squares problems in system identification[J].Automatica, 2013, 49(7):2213-2220. doi: 10.1016/j.automatica.2013.03.030
    [21] ISERMANN R.Practical aspects of process identification[J].Automatica, 1980, 16(5):575-587. doi: 10.1016/0005-1098(80)90079-5
    [22] VAN OMMEN J R, SCHOUTEN J C, VANDER STAPPEN M L M, et al.Response characteristics of probe-transducer systems for pressure measurements in gas-solid fluidized beds:How to prevent pitfalls in dynamic pressure measurements[J].Powder Technology, 1999, 113(1):199-218. doi: 10.1016-S0032-5910(99)00078-9/
    [23] KOBAYASHI H, LEGER T, WOLFF J M.Experimental and theoretical frequency response of pressure transducers for high speed turbomachinery[J].International Journal of Turbo & Jet-Engines, 2000, 17(2):153-160. http://cn.bing.com/academic/profile?id=dbfc8145ca88d31b9489d095a8f9a8c2&encoded=0&v=paper_preview&mkt=zh-cn
    [24] PANTON R L, MILLER J M.Resonant frequencies of cylindrical Helmholtz resonators[J].The Journal of the Acoustica Society of America, 1975, 57(6):1533-1535. doi: 10.1121/1.380596
    [25] 王超, 林大烜, 丁红兵, 等.基于凝结实验平台的音速喷嘴凝结现象研究[J].北京航空航天大学学报, 2017, 43(11):2232-2239. https://bhxb.buaa.edu.cn/CN/abstract/abstract14352.shtml

    WANG C, LIN D X, DING H B, et al.Study on condensation in sonic nozzle based on experimental condensation apparatus[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11):2232-2239(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract14352.shtml
    [26] WEGENER P P, CAGLIOSTRO D J.Periodic nozzle flow with heat addition[J].Combustion Science and Technology, 1973, 6(5):269-277. doi: 10.1080/00102207308952329
  • 加载中
图(9) / 表(8)
计量
  • 文章访问数:  514
  • HTML全文浏览量:  40
  • PDF下载量:  486
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-13
  • 录用日期:  2019-05-18
  • 网络出版日期:  2019-08-20

目录

    /

    返回文章
    返回
    常见问答