-
摘要:
雷达成像技术可获得目标的丰富特征信息,从而为目标识别提供重要依据。涡旋电磁波雷达成像技术可获得相对静止目标的高分辨率二维像,是成像领域的研究热点之一。为获得更高的成像质量,利用反正弦圆环天线阵列获得雷达波束内的方位角分辨能力,提出了一种基于反正弦圆环天线阵列的二维成像算法。利用半个圆环天线阵列,获得与涡旋电磁波雷达成像技术相近的方位角分辨率,并降低了旁瓣高度。对回波进行Dechirp处理,获得一维距离像;在此基础上,构建参考信号,通过信号间的共轭相乘将相位中的余弦函数变为线性函数;将回波累加,获得目标二维像。仿真分析了阵元个数和波束宽度对方位角分辨率的影响,并与涡旋电磁波雷达成像算法对比,验证了所提算法的有效性和鲁棒性。
Abstract:Radar imaging technology can capture rich feature information of a target, which provides important basis for target recognition. Vortex electromagnetic wave imaging technology, a widely discussed topic, can capture high-resolution two-dimensional images of relatively stationary targets. To achieve a higher imaging quality, the azimuth resolution in radar beams is obtained using arcsine-based circular antenna array, and a two-dimensional imaging algorithm based on the arcuate ring antenna array is proposed. With only half a circular antenna array, the azimuth resolution similar to that of vortex electromagnetic wave imaging technology can be obtained, and the sidelobe height is reduced. Firstly, the one-dimensional range profile is obtained through the “Dechirp” operation. On this basis, the reference signal is constructed, the cosine function in the phase is changed into a linear function through the conjugate multiplication between the echo and the reference signal. Finally, the echo is accumulated to obtain the two-dimensional image of the target. The effects of the number of array elements and beam width on the azimuth resolution are analyzed. The effectiveness of the proposed method is verified compared with that of vortex electromagnetic wave radar imaging method.
-
Key words:
- circular antenna array /
- two-dimensional imaging /
- real aperture radar /
- arcsine function /
- azimuth
-
表 1 雷达参数
Table 1. Radar parameters
参数 数值 阵列半径$a$/m 0.5 阵元个数$M$ 100 波束中心俯仰角${\theta _{\rm{c}}}$/rad 0.3 波束宽度${\theta _{\rm{b}}}$/rad 0.0175 载频$ {f_{\rm{c}}} $/GHz 15 带宽$ B $/GHz 0.3 发射脉冲时宽$ {T_{\rm{p}}} $/μs 500 -
[1] CHEN C H, ZHANG Q, GU F F, et al. High-speed target inverse synthetic aperture radar imaging via parametric sparse representation[J]. Journal of Applied Remote Sensing, 2017, 11(3): 035011. [2] CHEN Y J, ZHANG Q, LOU Y, et al. Multi-target radar imaging based on phased-MIMO technique—Part Ⅱ: Adaptive resource allocation[J]. IEEE Sensors Journal, 2017, 17(19): 6198-6209. doi: 10.1109/JSEN.2017.2740038 [3] HU C Y, WANG L, LI Z, et al. Inverse synthetic aperture radar imaging using a fully convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(7): 1203-1207. doi: 10.1109/LGRS.2019.2943069 [4] 李广帅, 苏娟, 李义红. 基于改进Faster R-CNN的SAR图像飞机检测算法[J]. 北京航空航天大学学报, 2021, 47(1): 159-168.LI G S, SU J, LI Y H. An aircraft detection algorithm in SAR image based on improved Faster R-CNN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 159-168(in Chinese). [5] OZ Y, ALP Y K, YAZGAN-ERER I. ISAR imaging under group sparsity constraints using ADMM[C]//2020 28th Signal Processing and Communications Applications Conference (SIU). Piscataway: IEEE Press, 2021: 1-4. [6] RONG J J, WANG Y, HAN T. Iterative optimization-based ISAR imaging with sparse aperture and its application in interferometric ISAR imaging[J]. IEEE Sensors Journal, 2019, 19(19): 8681-8693. doi: 10.1109/JSEN.2019.2923447 [7] ZHAO H P, WANG J L, GAO M G. Three-dimensional ISAR imaging for space target via multi-pass orbit observation[C]//International Conference on Radar Systems (Radar 2017). London: IET Press, 2017: 1-5. [8] RAJ R G, RODENBECK C T, BEUN J B, et al. 3D ISAR imaging algorithm based on amplitude monopulse processing at W band[C]//2019 IEEE International Symposium on Phased Array System & Technology (PAST). Piscataway: IEEE Press, 2020: 1-6. [9] 史林, 韩宁, 宋祥君, 等. 基于虚拟慢时间的双基地ISAR成像算法[J]. 航空学报, 2019, 40(5): 322683.SHI L, HAN N, SONG X J, et al. Bistatic ISAR imaging algorithm based on virtual slow time[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 322683(in Chinese). [10] XING M D, WU R B, LAN J Q, et al. Migration through resolution cell compensation in ISAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(2): 141-144. doi: 10.1109/LGRS.2004.824766 [11] 王建秋, 刘康, 王煜, 等. 涡旋电磁波雷达成像分辨力研究[J]. 雷达学报, 2021, 10151: 680-690.WANG J Q, LIU K, WANG Y, et al. Resolution analysis of vortex electromagnetic radar imaging[J]. Journal of Radars, 2021, 10151: 680-690 (in Chinese). [12] ZHAO H, WANG K Z. Orbital-angular-momentum-based radar imaging by dice regularized orthogonal matching pursuit[C]//2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP). Piscataway: IEEE Press, 2021: 446-450. [13] LIU K, CHENG Y Q, GAO Y, et al. Super-resolution radar imaging based on experimental OAM beams[J]. Applied Physics Letters, 2017, 110(16): 164102. doi: 10.1063/1.4981253 [14] LIU H Y, LIU K, CHENG Y Q, et al. Microwave vortex imaging based on dual coupled OAM beams[J]. IEEE Sensors Journal, 2020, 20(2): 806-815. doi: 10.1109/JSEN.2019.2943698 [15] LUO Y, CHEN Y J, ZHU Y Z, et al. Doppler effect and micro-Doppler effect of vortex-electromagnetic-wave-based radar[J]. IET Radar Sonar & Navigation, 2020, 14(1): 2-9. [16] LIU K, JIANG Y W, CHENG Y Q, et al. Electromagnetic vortex imaging based on distributed OAM radiation sources[C]//2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT). Piscataway: IEEE Press, 2018: 1-3. [17] WANG J Q, LIU K, CHENG Y Q, et al. Three-dimensional target imaging based on vortex stripmap SAR[J]. IEEE Sensors Journal, 2019, 19(4): 1338-1345. doi: 10.1109/JSEN.2018.2879814 [18] LIU K, CHENG Y Q, LI X, et al. Passive OAM-based radar imaging with single-in-multiple-out mode[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(9): 840-842. doi: 10.1109/LMWC.2018.2852146 [19] TANG B, GUO K Y, WANG J, et al. Resolution performance of the orbital-angular-momentum-based imaging radar[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2975-2978. doi: 10.1109/LAWP.2017.2756094 [20] 安道祥, 陈乐平, 冯东, 等. 机载圆周SAR成像技术研究[J]. 雷达学报, 2020, 9(2): 221-242. doi: 10.12000/JR20026AN D X, CHEN L P, FENG D, et al. Study of the airborne circular synthetic aperture radar imaging technology[J]. Journal of Radars, 2020, 9(2): 221-242(in Chinese). doi: 10.12000/JR20026 -