留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于反正弦圆环天线阵列的二维成像

袁航 罗迎 陈怡君 苏令华

袁航,罗迎,陈怡君,等. 基于反正弦圆环天线阵列的二维成像[J]. 北京航空航天大学学报,2023,49(6):1487-1494 doi: 10.13700/j.bh.1001-5965.2021.0437
引用本文: 袁航,罗迎,陈怡君,等. 基于反正弦圆环天线阵列的二维成像[J]. 北京航空航天大学学报,2023,49(6):1487-1494 doi: 10.13700/j.bh.1001-5965.2021.0437
YUAN H,LUO Y,CHEN Y J,et al. Two-dimensional imaging algorithm for arcsine-based circular antenna array[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1487-1494 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0437
Citation: YUAN H,LUO Y,CHEN Y J,et al. Two-dimensional imaging algorithm for arcsine-based circular antenna array[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1487-1494 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0437

基于反正弦圆环天线阵列的二维成像

doi: 10.13700/j.bh.1001-5965.2021.0437
基金项目: 国家自然科学基金(61971434,61801516)
详细信息
    作者简介:

    袁航 男,硕士研究生。主要研究方向:雷达成像与微动特征识别

    罗迎 男,博士,副教授,博士生导师。主要研究方向为SAR和ISAR中的信号处理和自动目标识别(ATR)

    通讯作者:

    E-mail:luoying2002521@163.com

  • 中图分类号: TN957

Two-dimensional imaging algorithm for arcsine-based circular antenna array

Funds: National Natural Science Foundation of China (61971434, 61801516)
More Information
  • 摘要:

    雷达成像技术可获得目标的丰富特征信息,从而为目标识别提供重要依据。涡旋电磁波雷达成像技术可获得相对静止目标的高分辨率二维像,是成像领域的研究热点之一。为获得更高的成像质量,利用反正弦圆环天线阵列获得雷达波束内的方位角分辨能力,提出了一种基于反正弦圆环天线阵列的二维成像算法。利用半个圆环天线阵列,获得与涡旋电磁波雷达成像技术相近的方位角分辨率,并降低了旁瓣高度。对回波进行Dechirp处理,获得一维距离像;在此基础上,构建参考信号,通过信号间的共轭相乘将相位中的余弦函数变为线性函数;将回波累加,获得目标二维像。仿真分析了阵元个数和波束宽度对方位角分辨率的影响,并与涡旋电磁波雷达成像算法对比,验证了所提算法的有效性和鲁棒性。

     

  • 图 1  雷达与散射点的几何关系

    Figure 1.  Geometric relationship between radar and scatterers

    图 2  $ {\varphi _p} = {d_l} $和$ {\varphi _p}\neq{d_l} $时方位角域成像结果

    Figure 2.  Imaging results when $ {\varphi _p}={d_l} $ and $ {\varphi _p}\neq{d_l} $ in azimuth domiain

    图 3  单散射点和多散射方位角域成像结果

    Figure 3.  Imaging results in azimuth domain of single and multiple scatterning points

    图 4  不同阵元个数的成像结果

    Figure 4.  Imaging results with different numbers of array elements

    图 5  方位角成像性能

    Figure 5.  Azimuth imaging performance

    图 6  波束宽度对成像的影响

    Figure 6.  Influence of beam width on imaging

    图 7  理想成像结果

    Figure 7.  Ideal imaging results

    图 8  涡旋电磁波成像结果

    Figure 8.  Imaging results of vortex electromagnetic wave

    图 9  反正弦阵列二维成像结果

    Figure 9.  Two-dimensional imaging results of arcsine circular array

    图 10  成像质量与SINR的关系

    Figure 10.  Relationship between image quality and SINR

    表  1  雷达参数

    Table  1.   Radar parameters

    参数数值
    阵列半径$a$/m0.5
    阵元个数$M$100
    波束中心俯仰角${\theta _{\rm{c}}}$/rad0.3
    波束宽度${\theta _{\rm{b}}}$/rad0.0175
    载频$ {f_{\rm{c}}} $/GHz15
    带宽$ B $/GHz0.3
    发射脉冲时宽$ {T_{\rm{p}}} $/μs500
    下载: 导出CSV
  • [1] CHEN C H, ZHANG Q, GU F F, et al. High-speed target inverse synthetic aperture radar imaging via parametric sparse representation[J]. Journal of Applied Remote Sensing, 2017, 11(3): 035011.
    [2] CHEN Y J, ZHANG Q, LOU Y, et al. Multi-target radar imaging based on phased-MIMO technique—Part Ⅱ: Adaptive resource allocation[J]. IEEE Sensors Journal, 2017, 17(19): 6198-6209. doi: 10.1109/JSEN.2017.2740038
    [3] HU C Y, WANG L, LI Z, et al. Inverse synthetic aperture radar imaging using a fully convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(7): 1203-1207. doi: 10.1109/LGRS.2019.2943069
    [4] 李广帅, 苏娟, 李义红. 基于改进Faster R-CNN的SAR图像飞机检测算法[J]. 北京航空航天大学学报, 2021, 47(1): 159-168.

    LI G S, SU J, LI Y H. An aircraft detection algorithm in SAR image based on improved Faster R-CNN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 159-168(in Chinese).
    [5] OZ Y, ALP Y K, YAZGAN-ERER I. ISAR imaging under group sparsity constraints using ADMM[C]//2020 28th Signal Processing and Communications Applications Conference (SIU). Piscataway: IEEE Press, 2021: 1-4.
    [6] RONG J J, WANG Y, HAN T. Iterative optimization-based ISAR imaging with sparse aperture and its application in interferometric ISAR imaging[J]. IEEE Sensors Journal, 2019, 19(19): 8681-8693. doi: 10.1109/JSEN.2019.2923447
    [7] ZHAO H P, WANG J L, GAO M G. Three-dimensional ISAR imaging for space target via multi-pass orbit observation[C]//International Conference on Radar Systems (Radar 2017). London: IET Press, 2017: 1-5.
    [8] RAJ R G, RODENBECK C T, BEUN J B, et al. 3D ISAR imaging algorithm based on amplitude monopulse processing at W band[C]//2019 IEEE International Symposium on Phased Array System & Technology (PAST). Piscataway: IEEE Press, 2020: 1-6.
    [9] 史林, 韩宁, 宋祥君, 等. 基于虚拟慢时间的双基地ISAR成像算法[J]. 航空学报, 2019, 40(5): 322683.

    SHI L, HAN N, SONG X J, et al. Bistatic ISAR imaging algorithm based on virtual slow time[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 322683(in Chinese).
    [10] XING M D, WU R B, LAN J Q, et al. Migration through resolution cell compensation in ISAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(2): 141-144. doi: 10.1109/LGRS.2004.824766
    [11] 王建秋, 刘康, 王煜, 等. 涡旋电磁波雷达成像分辨力研究[J]. 雷达学报, 2021, 10151: 680-690.

    WANG J Q, LIU K, WANG Y, et al. Resolution analysis of vortex electromagnetic radar imaging[J]. Journal of Radars, 2021, 10151: 680-690 (in Chinese).
    [12] ZHAO H, WANG K Z. Orbital-angular-momentum-based radar imaging by dice regularized orthogonal matching pursuit[C]//2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP). Piscataway: IEEE Press, 2021: 446-450.
    [13] LIU K, CHENG Y Q, GAO Y, et al. Super-resolution radar imaging based on experimental OAM beams[J]. Applied Physics Letters, 2017, 110(16): 164102. doi: 10.1063/1.4981253
    [14] LIU H Y, LIU K, CHENG Y Q, et al. Microwave vortex imaging based on dual coupled OAM beams[J]. IEEE Sensors Journal, 2020, 20(2): 806-815. doi: 10.1109/JSEN.2019.2943698
    [15] LUO Y, CHEN Y J, ZHU Y Z, et al. Doppler effect and micro-Doppler effect of vortex-electromagnetic-wave-based radar[J]. IET Radar Sonar & Navigation, 2020, 14(1): 2-9.
    [16] LIU K, JIANG Y W, CHENG Y Q, et al. Electromagnetic vortex imaging based on distributed OAM radiation sources[C]//2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT). Piscataway: IEEE Press, 2018: 1-3.
    [17] WANG J Q, LIU K, CHENG Y Q, et al. Three-dimensional target imaging based on vortex stripmap SAR[J]. IEEE Sensors Journal, 2019, 19(4): 1338-1345. doi: 10.1109/JSEN.2018.2879814
    [18] LIU K, CHENG Y Q, LI X, et al. Passive OAM-based radar imaging with single-in-multiple-out mode[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(9): 840-842. doi: 10.1109/LMWC.2018.2852146
    [19] TANG B, GUO K Y, WANG J, et al. Resolution performance of the orbital-angular-momentum-based imaging radar[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2975-2978. doi: 10.1109/LAWP.2017.2756094
    [20] 安道祥, 陈乐平, 冯东, 等. 机载圆周SAR成像技术研究[J]. 雷达学报, 2020, 9(2): 221-242. doi: 10.12000/JR20026

    AN D X, CHEN L P, FENG D, et al. Study of the airborne circular synthetic aperture radar imaging technology[J]. Journal of Radars, 2020, 9(2): 221-242(in Chinese). doi: 10.12000/JR20026
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  52
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-02
  • 录用日期:  2021-09-30
  • 网络出版日期:  2021-10-27
  • 整期出版日期:  2023-06-30

目录

    /

    返回文章
    返回
    常见问答