留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于干扰观测器的空间惯性传感器自适应控制

付海清 吴树范 刘梅林 孙笑云

付海清,吴树范,刘梅林,等. 基于干扰观测器的空间惯性传感器自适应控制[J]. 北京航空航天大学学报,2023,49(10):2799-2806 doi: 10.13700/j.bh.1001-5965.2021.0734
引用本文: 付海清,吴树范,刘梅林,等. 基于干扰观测器的空间惯性传感器自适应控制[J]. 北京航空航天大学学报,2023,49(10):2799-2806 doi: 10.13700/j.bh.1001-5965.2021.0734
FU H Q,WU S F,LIU M L,et al. Disturbance-observer based adaptive control for space inertial sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2799-2806 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0734
Citation: FU H Q,WU S F,LIU M L,et al. Disturbance-observer based adaptive control for space inertial sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2799-2806 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0734

基于干扰观测器的空间惯性传感器自适应控制

doi: 10.13700/j.bh.1001-5965.2021.0734
基金项目: 国家重点研发计划(2020YFC2200800)
详细信息
    通讯作者:

    E-mail:shufan.wu@sjtu.edu.cn

  • 中图分类号: V448.22+.3

Disturbance-observer based adaptive control for space inertial sensor

Funds: National Key R & D Program of China (2020YFC2200800)
More Information
  • 摘要:

    针对空间引力波探测航天器内部惯性传感器超高精度控制问题,提出一种基于干扰观测器的自适应控制方案,应用于探测航天器内部双检验质量静电悬浮控制,为探测任务提供高精度惯性基准。基于对系统附加干扰的观测与反馈,来设计干扰观测器实现对系统驱动噪声及非驱动噪声的分别估计;基于反步控制结构设计,基于神经网络的自适应反馈控制器,实现闭环噪声抑制与传感器电压驱动的非线性不确定性逼近。利用Lyapunov方法分析各闭环信号的收敛性,通过数值仿真来验证所提方案相比传统控制方案有更好地的稳定性,在探测频段内,非敏感轴各自由度闭环位移噪声水平达到${10^{ - 15}}\;{\text{m/}}{{\text{s}}^{\text{2}}}{\text{/H}}{{\text{z}}^{{\text{1/2}}}}$量级,残余加速度噪声水平达到${10^{ - 14}}\;{\text{m/}}{{\text{s}}^{\text{2}}}{\text{/H}}{{\text{z}}^{{\text{1/2}}}}$量级。相比常规状态反馈控制方案,噪声抑制性能提升约60%。

     

  • 图 1  不同控制方案下静电悬浮控制各自由度位移噪声谱质谱密度对比

    Figure 1.  Displacement noise spectrum density comparison of electrostatic suspension control under various control schemes

    图 2  不同控制方案下静电悬浮控制各自由度残余加速度幅值谱密度对比

    Figure 2.  The acceleration noise spectrum density comparison of electrostatic suspension control under various control schemes

  • [1] GATH P, FICHER W, KERSTEN M, et al. Drag free and attitude control system design for the LISA pathfinder mission[C]// Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2004: 5430.
    [2] MOBLEY F, FOUNTAIN G, SADILEK A, et al. Electromagnetic suspension for the tip-II satellite[J]. IEEE Transactions on Magnetics, 1975, 11(6): 1712-1716. doi: 10.1109/TMAG.1975.1058972
    [3] 罗俊, 艾凌皓, 艾艳丽, 等. 天琴计划简介[J]. 中山大学学报(自然科学版), 2021, 60(S1): 1-19. doi: 10.13471/j.cnki.acta.snus.2020.12.23.2020B154

    LUO J, AI L H, AI Y L, et al. A brief introduction to the Tianqin Project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(S1): 1-19(in Chinese). doi: 10.13471/j.cnki.acta.snus.2020.12.23.2020B154
    [4] FICHTER W, SCHLEICHER A, BENNANI S, et al. Closed loop performance and limitations of the LISA pathfinder drag-free control system[C]// Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit. Reston: AIAA, 2007: 6732.
    [5] LIAN X B, ZHANG J X, LU L, et al. Frequency separation control for drag-free satellite with frequency-domain constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 4085-4096. doi: 10.1109/TAES.2021.3088456
    [6] WU S F, FERTIN D. Spacecraft drag-free attitude control system design with Quantitative Feedback Theory[J]. Acta Astronautica, 2008, 62(12): 668-682. doi: 10.1016/j.actaastro.2008.01.038
    [7] FICHTER W, GATH P, VITALE S, et al. LISA Pathfinder drag-free control and system implications[J]. Classical and Quantum Gravity, 2005, 22(10): 139-148. doi: 10.1088/0264-9381/22/10/002
    [8] WU S F, GIULICCHI L, FENAL T, et al. Attitude stabilization of LISA pathfinder spacecraft using colloidal micro-newton thrusters[C]// Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2010: 8198.
    [9] WU S F, GIULICCHI L, FENAL T, et al. Attitude control of LISA pathfinder spacecraft with micro-newton FEEP thrusters under multiple failures[C]// Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2010: 8199.
    [10] GUO J X, TAO G, LIU Y. A multivariable MRAC scheme with application to a nonlinear aircraft model[J]. Automatica, 2011, 47(4): 804-812. doi: 10.1016/j.automatica.2011.01.069
    [11] LI B, HU Q L, YU Y B, et al. Observer-based fault-tolerant attitude control for rigid spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5): 2572-2582. doi: 10.1109/TAES.2017.2705318
    [12] ROY S B, BHASIN S, KAR I N. Combined MRAC for unknown MIMO LTI systems with parameter convergence[J]. IEEE Transactions on Automatic Control, 2018, 63(1): 283-290. doi: 10.1109/TAC.2017.2725955
    [13] MCNAMARA P, VITALE S, DANZMANN K. LISA pathfinder[J]. Classical and Quantum Gravity, 2008, 25(11): 114034.
    [14] SUN L, HUO W, JIAO Z X. Disturbance-observer-based robust relative pose control for spacecraft rendezvous and proximity operations under input saturation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1605-1617.
    [15] SUN L, HUO W, JIAO Z X. Robust nonlinear adaptive relative pose control for cooperative spacecraft during rendezvous and proximity operations[J]. IEEE Transactions on Control Systems Technology, 2017, 25(5): 1840-1847. doi: 10.1109/TCST.2016.2618907
    [16] YU X, LI P, ZHANG Y M. The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4135-4144. doi: 10.1109/TIE.2017.2772192
  • 加载中
图(2)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  65
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 录用日期:  2022-04-19
  • 网络出版日期:  2022-05-17
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答