-
摘要:
针对空间引力波探测航天器内部惯性传感器超高精度控制问题,提出一种基于干扰观测器的自适应控制方案,应用于探测航天器内部双检验质量静电悬浮控制,为探测任务提供高精度惯性基准。基于对系统附加干扰的观测与反馈,来设计干扰观测器实现对系统驱动噪声及非驱动噪声的分别估计;基于反步控制结构设计,基于神经网络的自适应反馈控制器,实现闭环噪声抑制与传感器电压驱动的非线性不确定性逼近。利用Lyapunov方法分析各闭环信号的收敛性,通过数值仿真来验证所提方案相比传统控制方案有更好地的稳定性,在探测频段内,非敏感轴各自由度闭环位移噪声水平达到${10^{ - 15}}\;{\text{m/}}{{\text{s}}^{\text{2}}}{\text{/H}}{{\text{z}}^{{\text{1/2}}}}$量级,残余加速度噪声水平达到${10^{ - 14}}\;{\text{m/}}{{\text{s}}^{\text{2}}}{\text{/H}}{{\text{z}}^{{\text{1/2}}}}$量级。相比常规状态反馈控制方案,噪声抑制性能提升约60%。
Abstract:An adaptive control approach for space inertial sensors based on disturbance observers is proposed to address the issue of ultra-high precision control of inertial sensors inside spacecraft for gravitational wave detection. It will apply to the electrostatic suspension control loop for double test masses inside the detection spacecraft, and provide high-precision inertial reference for detection tasks. The design of closed-loop control is based on the observation feedback of the additional disturbance. The observer is designed to separately estimate the actuation noise and the non-actuation noise. The adaptive feedback controller is designed based on the back-stepping control framework. This will realize the closed-loop noise suppression and the nonlinear coupling approximation of the sensor voltage actuation.Each closed-loop signal's convergence is examined using the Lyapunov approach, and numerical simulation confirms the scheme's increased stability over the conventional scheme. In the detection frequency band, the closed-loop displacement noise level of non-sensitive axis reaches 10−15 m/s2/Hz1/2, the residual acceleration noise level reaches 10−14 m/s2/Hz1/2. Compared with the conventional state feedback control scheme, the noise suppression performance is improved by about 60%.
-
-
[1] GATH P, FICHER W, KERSTEN M, et al. Drag free and attitude control system design for the LISA pathfinder mission[C]// Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2004: 5430. [2] MOBLEY F, FOUNTAIN G, SADILEK A, et al. Electromagnetic suspension for the tip-II satellite[J]. IEEE Transactions on Magnetics, 1975, 11(6): 1712-1716. doi: 10.1109/TMAG.1975.1058972 [3] 罗俊, 艾凌皓, 艾艳丽, 等. 天琴计划简介[J]. 中山大学学报(自然科学版), 2021, 60(S1): 1-19. doi: 10.13471/j.cnki.acta.snus.2020.12.23.2020B154LUO J, AI L H, AI Y L, et al. A brief introduction to the Tianqin Project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(S1): 1-19(in Chinese). doi: 10.13471/j.cnki.acta.snus.2020.12.23.2020B154 [4] FICHTER W, SCHLEICHER A, BENNANI S, et al. Closed loop performance and limitations of the LISA pathfinder drag-free control system[C]// Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit. Reston: AIAA, 2007: 6732. [5] LIAN X B, ZHANG J X, LU L, et al. Frequency separation control for drag-free satellite with frequency-domain constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 4085-4096. doi: 10.1109/TAES.2021.3088456 [6] WU S F, FERTIN D. Spacecraft drag-free attitude control system design with Quantitative Feedback Theory[J]. Acta Astronautica, 2008, 62(12): 668-682. doi: 10.1016/j.actaastro.2008.01.038 [7] FICHTER W, GATH P, VITALE S, et al. LISA Pathfinder drag-free control and system implications[J]. Classical and Quantum Gravity, 2005, 22(10): 139-148. doi: 10.1088/0264-9381/22/10/002 [8] WU S F, GIULICCHI L, FENAL T, et al. Attitude stabilization of LISA pathfinder spacecraft using colloidal micro-newton thrusters[C]// Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2010: 8198. [9] WU S F, GIULICCHI L, FENAL T, et al. Attitude control of LISA pathfinder spacecraft with micro-newton FEEP thrusters under multiple failures[C]// Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2010: 8199. [10] GUO J X, TAO G, LIU Y. A multivariable MRAC scheme with application to a nonlinear aircraft model[J]. Automatica, 2011, 47(4): 804-812. doi: 10.1016/j.automatica.2011.01.069 [11] LI B, HU Q L, YU Y B, et al. Observer-based fault-tolerant attitude control for rigid spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5): 2572-2582. doi: 10.1109/TAES.2017.2705318 [12] ROY S B, BHASIN S, KAR I N. Combined MRAC for unknown MIMO LTI systems with parameter convergence[J]. IEEE Transactions on Automatic Control, 2018, 63(1): 283-290. doi: 10.1109/TAC.2017.2725955 [13] MCNAMARA P, VITALE S, DANZMANN K. LISA pathfinder[J]. Classical and Quantum Gravity, 2008, 25(11): 114034. [14] SUN L, HUO W, JIAO Z X. Disturbance-observer-based robust relative pose control for spacecraft rendezvous and proximity operations under input saturation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1605-1617. [15] SUN L, HUO W, JIAO Z X. Robust nonlinear adaptive relative pose control for cooperative spacecraft during rendezvous and proximity operations[J]. IEEE Transactions on Control Systems Technology, 2017, 25(5): 1840-1847. doi: 10.1109/TCST.2016.2618907 [16] YU X, LI P, ZHANG Y M. The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4135-4144. doi: 10.1109/TIE.2017.2772192