Effect of critical eccentricity on forming accuracy of tubes in 3D free bending process
-
摘要:
三维自由弯曲成形过程中弯管处于少约束状态,弯管弯曲半径的大小及轴线形状取决于相应的弯曲模偏距值。为了准确成形出预设弯管的形状,提高弯管的自由弯曲成形精度,基于弯曲模临界偏距
U e建立了弯曲模偏距U 和弯管弯曲半径R (U -R )关系数学模型。采用有限元模拟与实验相结合的方法,研究了不同摩擦系数及材料参数条件下临界偏距的演化规律及其对弯管成形精度的影响。研究结果表明:引入临界偏距的U -R 关系拟合结果更加符合实验结果。随着摩擦系数的增加,弯管塑性变形程度增加,临界偏距的数值降低,弯管弯曲半径减小。相比于SS304不锈钢弯管,相同工艺参数下6061铝合金弯管的弯曲半径增大,临界偏距降低。Abstract:The tube is less limited during 3D free bending, and the eccentricity of the bending die determines the radius of the bend and the form of the bending axis. In order to accurately process the shape of the tube and improve the forming accuracy during the free bending process, a new free bending mechanical model was established for critical eccentricity. The influence of different friction coefficients and material parameters on the change of critical eccentricity were studied by using the finite element simulation and free bending tests. The findings have demonstrated that the experimental findings and the fitting outcomes of the
U -R relationship with critical eccentricity are in a good agreement. With the increase of friction coefficient, the degree of plastic deformation of the bending tube increases, and the value of critical eccentricity and the bending radius are decreasing. Compared with SS304 tubes, the bending radius of the 6061 Al tube increases and the critical eccentricity decreases at the same process parameters.-
Key words:
- tube /
- 3D free bending /
- elastic-plastic deformation /
- friction coefficient /
- material parameters
-
表 1 SS304管材力学性能参数
Table 1. Mechanics performance parameters of SS304 tube
弹性模量E/GPa 延伸率△/% 屈服强度σ0.2/MPa 抗拉强度σb/MPa 强度系数K/MPa 硬化指数n 194 15.72 235.42 265.76 1040.88 0.33 表 2 SS304管材自由弯曲有限元模拟工艺参数设置
Table 2. Setting parameters of free bending finite element simulation of SS304 tube
管材尺寸(D×t)/
(mm×mm)推进速度
v/(mm·s−1)管模间隙
△c/mm摩擦
系数f20×1 15 0.1 0.1 表 3 U-R关系拟合结果
Table 3. The fitting results of U-R relationship
公式 k c R2(COD) 式(17) 7834.610 ± 225.709 202.246 ± 35.888 0.99752 式(18) 11044.577 ± 185.952 141.952 ± 885 0.99915 表 4 6061管材自由弯曲有限元模拟工艺参数设置
Table 4. Setting parameters of free bending finite element simulation of 6061 tube
管材尺寸(D×t)/
(mm×mm)推进速度
v/(mm·s−1)管模间隙
△c/mm摩擦
系数f20×1 15 0.1 0.1 -
[1] 陶杰, 刘红兵. 金属管件冷成形技术研究进展[J]. 机械制造与自动化, 2009, 38(4): 1-5. doi: 10.3969/j.issn.1671-5276.2009.04.001TAO J, LIU H B. Reviewing of cold forming technology for T-shape tube and elbow[J]. Machine Building & Automation, 2009, 38(4): 1-5(in Chinese). doi: 10.3969/j.issn.1671-5276.2009.04.001 [2] GUO X Z, XIONG H, LI H, et al. Forming characteristics of tube-bending with small bending radii based on a new spherical connection[J]. International Journal of Machine Tools and Manufacture, 2018, 133: 72-84. doi: 10.1016/j.ijmachtools.2018.05.005 [3] MURATA M, KUBOKI T. CNC tube forming method for manufacturing flexibly and 3-Dimensionally bent tubes[J]. Springer Berlin Heidelberg, 2015, 4(28): 363-368. [4] 程旋. 矩形截面空心构件三维自由弯曲成形机理及缺陷调控研究[D]. 南京: 南京航空航天大学, 2020.CHENG X. Forming mechanism and defect control of hollow components with rectangular section manufactured by 3D free bending[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020(in Chinese). [5] 郝用兴, 张少华, 刘亚辉. 基于数值模拟的管材三维自由弯曲成形规律研究[J]. 制造自动化, 2021, 43(11): 101-104.HAO Y X, ZHANG S H, LIU Y H. Research on three dimensional free bending forming law of tube based on numerical simulation[J]. Manufacturing Automation, 2021, 43(11): 101-104(in Chinese). [6] 李秋, 王华军, 田梦芸, 等. 管材三维无芯弯曲过程有限元模拟[J]. 模具工业, 2013, 39(9): 33-36. doi: 10.16787/j.cnki.1001-2168.dmi.2013.09.008LI Q, WANG H J, TIAN M Y, et al. Finite element simulation of 3D bending process of tube[J]. Die & Mould Industry, 2013, 39(9): 33-36(in Chinese). doi: 10.16787/j.cnki.1001-2168.dmi.2013.09.008 [7] 鄂大辛, 宁汝新, 古涛. 管材弯曲过程中的弹塑性变形分析[J]. 兵工学报, 2009, 30(10): 1353-1356.E D X, NING R X, GU T. Analysis on the elastic-plastic deformation during tube-bending process[J]. Acta Armanmentarii, 2009, 30(10): 1353-1356(in Chinese). [8] SUN C, WANG Z L, ZHANG S Y, et al. Toward axial accuracy prediction and optimization of metal tube bending forming: A novel GRU-integrated Pb-NSGA-Ⅲ optimization framework[J]. Engineering Applications of Artificial Intelligence, 2022, 114: 105193. doi: 10.1016/j.engappai.2022.105193 [9] YANG H, LI H, MA J, et al. Breaking bending limit of difficult-to-form titanium tubes by differential heating-based reconstruction of neutral layer shifting[J]. International Journal of Machine Tools and Manufacture, 2021, 166: 103742. doi: 10.1016/j.ijmachtools.2021.103742 [10] 戴莉, 方军, 程璐, 等. 材料参数对高强不锈钢管数控绕弯成形失稳起皱的影响[J]. 精密成形工程, 2017, 9(1): 91-95.DAI L, FANG J, CHENG L, et al. Effects of material parameters on wrinkling of high-strength stainless steel tube in numerical control potary draw bending[J]. Journal of Netshape Forming Engineering, 2017, 9(1): 91-95(in Chinese). [11] 鄂大辛, 周大军. 金属管材弯曲理论及成形缺陷分析[M]. 北京: 北京理工大学出版社, 2016.E D X, ZHOU D J. Metal tube bending: theory and forming defects analysis[M]. Beijing: Beijing Institute of Technology Press, 2016(in Chinese). [12] 白春玉, 齐丕骞, 牟让科, 等. 基于经典Von Mises应力的多轴等效应力修正方法研究[J]. 振动与冲击, 2015, 34(23): 166-170.BAI C Y, QI P Q, MU R K, et al. Multiaxial equivalent stress amendment algorithm based on classical von mises stress[J]. Journal of Vibration and Shock, 2015, 34(23): 166-170(in Chinese). [13] CHEN J, SHU W, LI J. Constitutive model of Q345 steel at different intermediate strain rates[J]. International Journal of Steel Structures, 2017, 17(1): 127-137. doi: 10.1007/s13296-016-0122-8 [14] GUO X Z, XIONG H. Numerical simulation and experimental study on mechanism and characteristics of tube free-bending forming process[J]. Procedia Manufacturing, 2018, 15: 836-843. doi: 10.1016/j.promfg.2018.07.179 [15] WANG J, ZHOU J, ZHU S S, et al. Friction properties of groove texture on Cr12MoV surface[J]. Journal of Central South University, 2017, 24(2): 303-310. doi: 10.1007/s11771-017-3431-y [16] PALANIKUMAR P, GNANASEKARAN N, SUBRAHMANYA K, et al. Effect of sliding speed and rise in temperature at the contact interface on coefficient of friction during full sliding of SS304[J]. Materials Today:Proceedings, 2020, 27: 1996-1999. [17] GUO X Z, MA Y N, CHEN W L, et al. Simulation and experimental research of the free bending process of a spatial tube[J]. Journal of Materials Processing Technology, 2018, 255: 137-149. doi: 10.1016/j.jmatprotec.2017.11.062 [18] 马福业. 6061铝合金管材成形性能评价及参数优化研究[D]. 南京: 南京航空航天大学, 2017.MA F Y. Formability evaluation and parameters optimization of 6061 aluminum alloy tubes[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017(in Chinese). -