留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维自由弯曲过程中临界偏距对管材成形精度影响

范鑫 程宗辉 李少鑫 舒送 程诚 郭训忠

范鑫,程宗辉,李少鑫,等. 三维自由弯曲过程中临界偏距对管材成形精度影响[J]. 北京航空航天大学学报,2024,50(1):208-215 doi: 10.13700/j.bh.1001-5965.2022.0221
引用本文: 范鑫,程宗辉,李少鑫,等. 三维自由弯曲过程中临界偏距对管材成形精度影响[J]. 北京航空航天大学学报,2024,50(1):208-215 doi: 10.13700/j.bh.1001-5965.2022.0221
FAN X,CHENG Z H,LI S X,et al. Effect of critical eccentricity on forming accuracy of tubes in 3D free bending process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):208-215 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0221
Citation: FAN X,CHENG Z H,LI S X,et al. Effect of critical eccentricity on forming accuracy of tubes in 3D free bending process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):208-215 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0221

三维自由弯曲过程中临界偏距对管材成形精度影响

doi: 10.13700/j.bh.1001-5965.2022.0221
基金项目: 国家自然科学基金(52105360,52175328,U1937206);数字制造装备与技术国家重点实验室开放课题(DMETKF2021004);江苏省工业感知及智能制造装备工程研究中心开放基金(2021-04);江苏省“双创博士”项目(JSSCBS20210157)
详细信息
    通讯作者:

    E-mail:c_cheng@nuaa.edu.cn

  • 中图分类号: TG386

Effect of critical eccentricity on forming accuracy of tubes in 3D free bending process

Funds: National Natural Science Foundation of China (52105360,52175328,U1937206); Opening Project of State Key Lab of Digital Manufacturing Equipment and Technology (DMETKF2021004); Open Fund of Jiangsu Industrial Perception and Intelligent Manufacturing Equipment Engineering Research Center (2021-04); Jiangsu Shuangchuang Talent Program (JSSCBS20210157)
More Information
  • 摘要:

    三维自由弯曲成形过程中弯管处于少约束状态,弯管弯曲半径的大小及轴线形状取决于相应的弯曲模偏距值。为了准确成形出预设弯管的形状,提高弯管的自由弯曲成形精度,基于弯曲模临界偏距Ue建立了弯曲模偏距U和弯管弯曲半径RU-R)关系数学模型。采用有限元模拟与实验相结合的方法,研究了不同摩擦系数及材料参数条件下临界偏距的演化规律及其对弯管成形精度的影响。研究结果表明:引入临界偏距的U-R关系拟合结果更加符合实验结果。随着摩擦系数的增加,弯管塑性变形程度增加,临界偏距的数值降低,弯管弯曲半径减小。相比于SS304不锈钢弯管,相同工艺参数下6061铝合金弯管的弯曲半径增大,临界偏距降低。

     

  • 图 1  三维自由弯曲成形原理示意图

    Figure 1.  Schematic diagram of 3D free bending principle

    图 2  三维自由弯曲弯管应力状态和几何参数示意图

    Figure 2.  Schematic diagram of stress state and geometric parameters of a 3D free bending bent tube

    图 3  平面螺旋典型弯曲构件的U-R映射原理图

    Figure 3.  Schematic mapping of dimension characteristics and U-R relationship of planar involute components

    图 4  SS304管材流动应力-应变曲线

    Figure 4.  True stress-strain curves of SS304 tube

    图 5  三维自由弯曲数值模拟有限元模型

    Figure 5.  Finite element model for numerical simulation of 3D free bending

    图 6  三维自由弯曲有限元模拟结果以及相应的U-R关系

    Figure 6.  Finite element simulation results and corresponding U-R relationship of 3D free bending

    图 7  三维自由弯曲成形装备

    Figure 7.  3D free bending molding equipment

    图 8  三维自由弯曲成形实验弯管以及相应的U-R关系

    Figure 8.  Experimental bends and corresponding U-R relationship of 3D free bending

    图 9  三维自由弯曲成形U-R关系曲线及拟合结果

    Figure 9.  U-R curves and fitting results of 3D free bending molding

    图 10  连续变曲率构件自由弯曲成形实验

    Figure 10.  Experiment on free bending forming of planar involute components

    图 11  不同摩擦系数条件下临界偏距Ue演化情况

    Figure 11.  Evolution of critical eccentricity under different friction coefficients

    图 12  自由弯曲成形弯管应变分布情况

    Figure 12.  Strain distribution of 3D free-bend-forming bends

    图 13  不同材料参数条件下的临界偏距模拟情况对比

    Figure 13.  Simulation results of critical eccentricity under different material parameters

    表  1  SS304管材力学性能参数

    Table  1.   Mechanics performance parameters of SS304 tube

    弹性模量E/GPa 延伸率/% 屈服强度σ0.2/MPa 抗拉强度σb/MPa 强度系数K/MPa 硬化指数n
    194 15.72 235.42 265.76 1040.88 0.33
    下载: 导出CSV

    表  2  SS304管材自由弯曲有限元模拟工艺参数设置

    Table  2.   Setting parameters of free bending finite element simulation of SS304 tube

    管材尺寸(D×t)/
    (mm×mm)
    推进速度
    v/(mm·s−1
    管模间隙
    c/mm
    摩擦
    系数f
    20×1 15 0.1 0.1
    下载: 导出CSV

    表  3  U-R关系拟合结果

    Table  3.   The fitting results of U-R relationship

    公式 k c R2(COD)
    式(17) 7834.610 ± 225.709 202.246 ± 35.888 0.99752
    式(18) 11044.577 ± 185.952 141.952 ± 885 0.99915
    下载: 导出CSV

    表  4  6061管材自由弯曲有限元模拟工艺参数设置

    Table  4.   Setting parameters of free bending finite element simulation of 6061 tube

    管材尺寸(D×t)/
    (mm×mm)
    推进速度
    v/(mm·s−1
    管模间隙
    c/mm
    摩擦
    系数f
    20×1 15 0.1 0.1
    下载: 导出CSV
  • [1] 陶杰, 刘红兵. 金属管件冷成形技术研究进展[J]. 机械制造与自动化, 2009, 38(4): 1-5. doi: 10.3969/j.issn.1671-5276.2009.04.001

    TAO J, LIU H B. Reviewing of cold forming technology for T-shape tube and elbow[J]. Machine Building & Automation, 2009, 38(4): 1-5(in Chinese). doi: 10.3969/j.issn.1671-5276.2009.04.001
    [2] GUO X Z, XIONG H, LI H, et al. Forming characteristics of tube-bending with small bending radii based on a new spherical connection[J]. International Journal of Machine Tools and Manufacture, 2018, 133: 72-84. doi: 10.1016/j.ijmachtools.2018.05.005
    [3] MURATA M, KUBOKI T. CNC tube forming method for manufacturing flexibly and 3-Dimensionally bent tubes[J]. Springer Berlin Heidelberg, 2015, 4(28): 363-368.
    [4] 程旋. 矩形截面空心构件三维自由弯曲成形机理及缺陷调控研究[D]. 南京: 南京航空航天大学, 2020.

    CHENG X. Forming mechanism and defect control of hollow components with rectangular section manufactured by 3D free bending[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020(in Chinese).
    [5] 郝用兴, 张少华, 刘亚辉. 基于数值模拟的管材三维自由弯曲成形规律研究[J]. 制造自动化, 2021, 43(11): 101-104.

    HAO Y X, ZHANG S H, LIU Y H. Research on three dimensional free bending forming law of tube based on numerical simulation[J]. Manufacturing Automation, 2021, 43(11): 101-104(in Chinese).
    [6] 李秋, 王华军, 田梦芸, 等. 管材三维无芯弯曲过程有限元模拟[J]. 模具工业, 2013, 39(9): 33-36. doi: 10.16787/j.cnki.1001-2168.dmi.2013.09.008

    LI Q, WANG H J, TIAN M Y, et al. Finite element simulation of 3D bending process of tube[J]. Die & Mould Industry, 2013, 39(9): 33-36(in Chinese). doi: 10.16787/j.cnki.1001-2168.dmi.2013.09.008
    [7] 鄂大辛, 宁汝新, 古涛. 管材弯曲过程中的弹塑性变形分析[J]. 兵工学报, 2009, 30(10): 1353-1356.

    E D X, NING R X, GU T. Analysis on the elastic-plastic deformation during tube-bending process[J]. Acta Armanmentarii, 2009, 30(10): 1353-1356(in Chinese).
    [8] SUN C, WANG Z L, ZHANG S Y, et al. Toward axial accuracy prediction and optimization of metal tube bending forming: A novel GRU-integrated Pb-NSGA-Ⅲ optimization framework[J]. Engineering Applications of Artificial Intelligence, 2022, 114: 105193. doi: 10.1016/j.engappai.2022.105193
    [9] YANG H, LI H, MA J, et al. Breaking bending limit of difficult-to-form titanium tubes by differential heating-based reconstruction of neutral layer shifting[J]. International Journal of Machine Tools and Manufacture, 2021, 166: 103742. doi: 10.1016/j.ijmachtools.2021.103742
    [10] 戴莉, 方军, 程璐, 等. 材料参数对高强不锈钢管数控绕弯成形失稳起皱的影响[J]. 精密成形工程, 2017, 9(1): 91-95.

    DAI L, FANG J, CHENG L, et al. Effects of material parameters on wrinkling of high-strength stainless steel tube in numerical control potary draw bending[J]. Journal of Netshape Forming Engineering, 2017, 9(1): 91-95(in Chinese).
    [11] 鄂大辛, 周大军. 金属管材弯曲理论及成形缺陷分析[M]. 北京: 北京理工大学出版社, 2016.

    E D X, ZHOU D J. Metal tube bending: theory and forming defects analysis[M]. Beijing: Beijing Institute of Technology Press, 2016(in Chinese).
    [12] 白春玉, 齐丕骞, 牟让科, 等. 基于经典Von Mises应力的多轴等效应力修正方法研究[J]. 振动与冲击, 2015, 34(23): 166-170.

    BAI C Y, QI P Q, MU R K, et al. Multiaxial equivalent stress amendment algorithm based on classical von mises stress[J]. Journal of Vibration and Shock, 2015, 34(23): 166-170(in Chinese).
    [13] CHEN J, SHU W, LI J. Constitutive model of Q345 steel at different intermediate strain rates[J]. International Journal of Steel Structures, 2017, 17(1): 127-137. doi: 10.1007/s13296-016-0122-8
    [14] GUO X Z, XIONG H. Numerical simulation and experimental study on mechanism and characteristics of tube free-bending forming process[J]. Procedia Manufacturing, 2018, 15: 836-843. doi: 10.1016/j.promfg.2018.07.179
    [15] WANG J, ZHOU J, ZHU S S, et al. Friction properties of groove texture on Cr12MoV surface[J]. Journal of Central South University, 2017, 24(2): 303-310. doi: 10.1007/s11771-017-3431-y
    [16] PALANIKUMAR P, GNANASEKARAN N, SUBRAHMANYA K, et al. Effect of sliding speed and rise in temperature at the contact interface on coefficient of friction during full sliding of SS304[J]. Materials Today:Proceedings, 2020, 27: 1996-1999.
    [17] GUO X Z, MA Y N, CHEN W L, et al. Simulation and experimental research of the free bending process of a spatial tube[J]. Journal of Materials Processing Technology, 2018, 255: 137-149. doi: 10.1016/j.jmatprotec.2017.11.062
    [18] 马福业. 6061铝合金管材成形性能评价及参数优化研究[D]. 南京: 南京航空航天大学, 2017.

    MA F Y. Formability evaluation and parameters optimization of 6061 aluminum alloy tubes[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017(in Chinese).
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  164
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 录用日期:  2022-07-22
  • 网络出版日期:  2022-10-18
  • 整期出版日期:  2024-01-31

目录

    /

    返回文章
    返回
    常见问答