留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拓扑优化相变热沉在不同重力场的性能

王仕淞 殷健宝 邢玉明 侯煦 王子贤

王仕淞,殷健宝,邢玉明,等. 拓扑优化相变热沉在不同重力场的性能[J]. 北京航空航天大学学报,2024,50(1):250-259 doi: 10.13700/j.bh.1001-5965.2022.0222
引用本文: 王仕淞,殷健宝,邢玉明,等. 拓扑优化相变热沉在不同重力场的性能[J]. 北京航空航天大学学报,2024,50(1):250-259 doi: 10.13700/j.bh.1001-5965.2022.0222
WANG S S,YIN J B,XING Y M,et al. Topological optimzation of phase change heat sink performance in different gravity fields[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):250-259 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0222
Citation: WANG S S,YIN J B,XING Y M,et al. Topological optimzation of phase change heat sink performance in different gravity fields[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):250-259 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0222

拓扑优化相变热沉在不同重力场的性能

doi: 10.13700/j.bh.1001-5965.2022.0222
基金项目: 航空科学基金(20172851018)
详细信息
    作者简介:

    王仕淞等:拓扑优化相变热沉在不同重力场的性能研究 5

    通讯作者:

    E-mail:xym505@163.com

  • 中图分类号: V221.8;V221.92;V228.3;V245.343

Topological optimzation of phase change heat sink performance in different gravity fields

Funds: Aeronautical Science Foundation of China (20172851018)
More Information
  • 摘要:

    为强化相变热沉的性能,基于带惩罚的固体各向同性材料(SIMP)法对山梨糖醇相变热沉进行传热拓扑优化设计。对拓扑优化的相变热沉(Ⅰ)和直肋式的相变热沉(Ⅱ)进行定常重力(0~20g)和周期性重力条件的数值模拟研究。利用无量纲数对比二者的热性能,研究结果表明:热沉Ⅰ的吸热和均热性能优于热沉Ⅱ;在相同重力环境下,以80 ℃为目标,热沉Ⅰ温控时间比热沉Ⅱ平均多26.8%;微低重力下热沉内部近乎导热,略逊于常规重力下热性能;超重力强化的自然对流可以显著提升热沉性能,10g条件相比常规重力的温控时间增加8.94%,而相同Ra*下,周期性重力对热沉Ⅰ的性能有抑制作用。研究结果对飞行器载相变热沉的地面细化设计有一定指导意义。

     

  • 图 1  热沉Ⅰ的拓扑优化设计域和热沉Ⅱ的结构示意图

    Figure 1.  Topological optimization design domain of heat sink I and structural schematic diagram of heat sink Ⅱ

    图 2  不同网格尺寸液相分数随时间变化曲线

    Figure 2.  Time varying curves of liquid phase fraction with different grid sizes

    图 3  不同时间步长液相分数随时间变化曲线

    Figure 3.  Time varying curves of liquid phase fraction with different time steps

    图 4  热沉Ⅰ树状拓扑优化结果示意图

    Figure 4.  Schematic of tree-like topological optimization result for heat sink I

    图 5  热沉Ⅰ,θFo·Ste*的关系

    Figure 5.  Heat sink Ⅰ, θ relationship with Fo·Ste*

    图 6  热沉Ⅰ液相体积分数$\varphi $与Fo·Ste*的关系

    Figure 6.  Heat sink Ⅰ liquid phase volume fraction $\varphi $ relationship with Fo·Ste*

    图 7  热沉Ⅰ与热沉Ⅱ的θFo·Ste*关系

    Figure 7.  θ of heat sinks Ⅰ and Ⅱ relationship with Fo·Ste*

    图 8  θ=1为目标热沉Ⅰ与热沉Ⅱ的控温时长

    Figure 8.  Temperature control time of heat sinks Ⅰ and Ⅱ at θ=1

    图 9  热沉Ⅰ与热沉Ⅱ的V*Fo·Ste*关系

    Figure 9.  V* of heat sinks Ⅰ and Ⅱ relationship with Fo·Ste*

    图 10  热沉Ⅰ与热沉Ⅱ在不同Ra*下流场的变化

    Figure 10.  Varying of flow for field heat sinks Ⅰand Ⅱ at different Ra*

    图 11  热沉Ⅰ与热沉Ⅱ在不同Ra*下的融化进展

    Figure 11.  Varying of melting progress for heat sinks Ⅰand Ⅱ at different Ra*

    图 12  周期性重力场中热沉Ⅰ的θFo·Ste*关系

    Figure 12.  θ of heat sink Ⅰ in periodic gravity field relationship with Fo·Ste*

    表  1  相变热沉的材料物性

    Table  1.   Material properties of heat sinks

    材料 参数 数值
    山梨糖醇[30-31]熔点Tm/℃75
    比热容cp (25 ℃)/ [J·(kg·K)−1]2 050
    比热容cp (100 ℃)/ [J·(kg·K)−1]2 990
    密度ρ/(kg·m−3)1 490
    导热系数k/[W·(m·K)−1]0.59
    相变潜热L/(J·kg−1)177 000
    热膨胀系数β/T−10.000 1
    动力黏度μ/(Pa·s)0.003 3
    比热容cpal (25 ℃)/[ J·(kg·K)−1]871
    密度ρal/(kg·m−3)2 719
    导热系数kal/[W·(m·K)−1]238
    下载: 导出CSV

    表  2  重力场中不同时刻热沉Ⅰ和Ⅱ的温度

    Table  2.   Temperature of heat sinks Ⅰ and Ⅱ at different time in gravity field

    Ra* 热沉 Fo·Ste*=1.90 Fo·Ste*=2.37 Fo·Ste*=2.84
    θav θ θav θ θav θ
    0 0.715 1.038 1.014 1.341 1.429 1.754
    1.155 1.362 1.596 1.807 2.132 2.346
    8.98×103 0.711 1.034 1.001 1.335 1.417 1.743
    1.149 1.356 1.588 1.798 2.120 2.332
    8.98×104 0.707 1.030 1.000 1.325 1.402 1.720
    1.147 1.350 1.579 1.783 2.072 2.263
    8.98×105 0.654 0.961 0.825 1.108 1.043 1.311
    1.031 1.201 1.200 1.327 1.034 1.544
     注:表中黑色加粗为拓扑优化热沉对应数据。
    下载: 导出CSV
  • [1] KUMAR A, TIWARI A K, SAID Z. A comprehensive review analysis on advances of evacuated tube solar collector using nanofluids and PCM[J]. Sustainable Energy Technologies and Assessments, 2021, 47: 101417. doi: 10.1016/j.seta.2021.101417
    [2] SELVNES H, ALLOUCHE Y, MANESCU R I, et al. Review on cold thermal energy storage applied to refrigeration systems using phase change materials[J]. Thermal Science and Engineering Progress, 2021, 22: 100807. doi: 10.1016/j.tsep.2020.100807
    [3] DA CUNHA S R L, DE AGUIAR J L B. Phase change materials and energy efficiency of buildings: A review of knowledge[J]. Journal of Energy Storage, 2020, 27: 101083. doi: 10.1016/j.est.2019.101083
    [4] THAKUR A K, PRABAKARAN R, ELKADEEM M, et al. A state of art review and future viewpoint on advance cooling techniques for lithium-ion battery system of electric vehicles[J]. Journal of Energy Storage, 2020, 32: 101771. doi: 10.1016/j.est.2020.101771
    [5] LYU J, LIU Z W, WU X H, et al. Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth[J]. ACS Nano, 2019, 13(2): 2236-2245.
    [6] YANG T Y, BRAUN P V, MILJKOVIC N, et al. Phase change material heat sink for transient cooling of high-power devices[J]. International Journal of Heat and Mass Transfer, 2021, 170: 121033. doi: 10.1016/j.ijheatmasstransfer.2021.121033
    [7] SHAMBERGER P J, BRUNO N M. Review of metallic phase change materials for high heat flux transient thermal management applications[J]. Applied Energy, 2020, 258: 113955. doi: 10.1016/j.apenergy.2019.113955
    [8] MATHEW J, KRISHNAN S. A review on transient thermal management of electronic devices[J]. Journal of Electronic Packaging, 2022, 144(1): 010801.
    [9] ZHAO L, XING Y M, LIU X. Experimental investigation on the thermal management performance of heat sink using low melting point alloy as phase change material[J]. Renewable Energy, 2020, 146: 1578-1587. doi: 10.1016/j.renene.2019.07.115
    [10] 何智航. 热管PCM热控装置设计及性能研究[J]. 热科学与技术, 2018, 17(1): 80-86. doi: 10.13738/j.issn.1671-8097.017122

    HE Z H. Design and performance study on heat pipe/PCM composite thermal control device[J]. Journal of Thermal Science and Technology, 2018, 17(1): 80-86(in Chinese). doi: 10.13738/j.issn.1671-8097.017122
    [11] 宁献文, 李劲东, 王玉莹, 等. 中国航天器新型热控系统构建进展评述[J]. 航空学报, 2019, 40(7): 022874.

    NING X W, LI J D, WANG Y Y, et al. Review on construction of new spacecraft thermal control system in China[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 022874(in Chinese).
    [12] GE H S, LI H Y, MEI S F, et al. Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area[J]. Renewable and Sustainable Energy Reviews, 2013, 21: 331-346. doi: 10.1016/j.rser.2013.01.008
    [13] 赵亮, 邢玉明, 刘鑫, 等. 基于硬脂酸复合相变材料的被动热沉性能[J]. 北京航空航天大学学报, 2019, 45(5): 970-979. doi: 10.13700/j.bh.1001-5965.2018.0513

    ZHAO L, XING Y M, LIU X, et al. Performance of a passive heat sink using stearic acid based composite as phase change material[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 970-979(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0513
    [14] WANG S S, XING Y M, HAO Z L, et al. Experimental study on the thermal performance of PCMS based heat sink using higher alcohol/graphite foam[J]. Applied Thermal Engineering, 2021, 198: 117452. doi: 10.1016/j.applthermaleng.2021.117452
    [15] BABY R, BALAJI C. Thermal optimization of PCM based pin fin heat sinks: An experimental study[J]. Applied Thermal Engineering, 2013, 54(1): 65-77. doi: 10.1016/j.applthermaleng.2012.10.056
    [16] DESAI A N, GUNJAL A, SINGH V K. Numerical investigations of fin efficacy for phase change material (PCM) based thermal control module[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118855. doi: 10.1016/j.ijheatmasstransfer.2019.118855
    [17] 江洪, 刘敬仪. 3D打印在航空航天领域中的应用初探[J]. 新材料产业, 2019(2): 21-24. doi: 10.19599/j.issn.1008-892x.2019.02.006

    JIANG H, LIU J Y. Application of 3D printing in aerospace field[J]. Advanced Materials Industry, 2019(2): 21-24(in Chinese). doi: 10.19599/j.issn.1008-892x.2019.02.006
    [18] DBOUK T. A Review about the engineering design of optimal heat transfer systems using topology optimization[J]. Applied Thermal Engineering, 2017, 112: 841-854. doi: 10.1016/j.applthermaleng.2016.10.134
    [19] ALEXANDERSEN J, SIGMUND O, MEYER K E, et al. Design of passive coolers for light-emitting diode lamps using topology optimisation[J]. International Journal of Heat and Mass Transfer, 2018, 122: 138-149. doi: 10.1016/j.ijheatmasstransfer.2018.01.103
    [20] LAZAROV B S, SIGMUND O, MEYER K E, et al. Experimental validation of additively manufactured optimized shapes for passive cooling[J]. Applied Energy, 2018, 226: 330-339. doi: 10.1016/j.apenergy.2018.05.106
    [21] PIZZOLATO A, SHARMA A, MAUTE K, et al. Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization[J]. Applied Energy, 2017, 208: 210-227. doi: 10.1016/j.apenergy.2017.10.050
    [22] PIZZOLATO A, SHARMA A, GE R H, et al. Maximization of performance in multi-tube latent heat storage-optimization of fins topology, effect of materials selection and flow arrangements[J]. Energy, 2020, 203: 114797. doi: 10.1016/j.energy.2019.02.155
    [23] 游吟, 赵耀, 赵长颖, 等. 相变储热单元内肋片结构的拓扑优化[J]. 科学通报, 2019, 64(11): 1191-1199. doi: 10.1360/N972018-01134

    YOU Y, ZHAO Y, ZHAO C Y, et al. The topology optimization of the fin structure in latent heat storage[J]. Chinese Science Bulletin, 2019, 64(11): 1191-1199(in Chinese). doi: 10.1360/N972018-01134
    [24] TIAN Y, LIU X L, XU Q, et al. Bionic topology optimization of fins for rapid latent heat thermal energy storage[J]. Applied Thermal Engineering, 2021, 194: 117104. doi: 10.1016/j.applthermaleng.2021.117104
    [25] 罗叶刚, 邢玉明, 赵亮, 等. 振动环境对相变组件热控性能影响的实验[J]. 航空动力学报, 2019, 34(3): 592-599. doi: 10.13224/j.cnki.jasp.2019.03.010

    LUO Y G, XING Y M, ZHAO L, et al. Experiment on the thermal management performance of phase change material under vibration environment[J]. Journal of Aerospace Power, 2019, 34(3): 592-599(in Chinese). doi: 10.13224/j.cnki.jasp.2019.03.010
    [26] EZQUERRO J M, BELLO A, SALGADO SÁNCHEZ P, et al. The thermocapillary effects in phase change materials in microgravity experiment: Design, preparation and execution of a parabolic flight experiment[J]. Acta Astronautica, 2019, 162: 185-196. doi: 10.1016/j.actaastro.2019.06.004
    [27] SALGADO SÁNCHEZ P, EZQUERRO J M, FERNÁNDEZ J, et al. Thermocapillary effects during the melting of phase change materials in microgravity: Heat transport enhancement[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120478. doi: 10.1016/j.ijheatmasstransfer.2020.120478
    [28] XU Y, ZHU Z H, LI S, et al. Numerical investigation on melting process of a phase change material under supergravity[J]. Journal of Thermal Science and Engineering Applications, 2021, 13(2): 021014. doi: 10.1115/1.4047524
    [29] KANSARA K, SINGH V K, PATEL R, et al. Numerical investigations of phase change material (PCM) based thermal control module (TCM) under the influence of low gravity environment[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120811. doi: 10.1016/j.ijheatmasstransfer.2020.120811
    [30] IRADUKUNDA A C, VARGAS A, HUITINK D, et al. Transient thermal performance using phase change material integrated topology optimized heat sinks[J]. Applied Thermal Engineering, 2020, 179: 115723. doi: 10.1016/j.applthermaleng.2020.115723
    [31] BOLMATENKOV D N, YAGOFAROV M I, SOKOLOV A A, et al. The heat capacities and fusion thermochemistry of sugar alcohols between 298.15 K and Tm: The study of D-sorbitol, D-mannitol and myo-inositol[J]. Journal of Molecular Liquids, 2021, 330: 115545. doi: 10.1016/j.molliq.2021.115545
    [32] HO J Y, SEE Y S, LEONG K C, et al. An experimental investigation of a PCM-based heat sink enhanced with a topology-optimized tree-like structure[J]. Energy Conversion and Management, 2021, 245: 114608. doi: 10.1016/j.enconman.2021.114608
    [33] HOU X, XING Y M, HAO Z L. Multi-objective optimization of a composite phase change material-based heat sink under non-uniform discrete heating[J]. Applied Thermal Engineering, 2021, 197: 117435. doi: 10.1016/j.applthermaleng.2021.117435
    [34] 侯煦, 邢玉明, 郝兆龙, 等. 高碳醇/膨胀石墨复合相变热沉多目标优化[J]. 北京航空航天大学学报, 2021, 47(9): 1866-1873. doi: 10.13700/j.bh.1001-5965.2020.0341

    HOU X, XING Y M, HAO Z L, et al. Multi-objective optimization of a high alcohol/expanded graphite composite PCM based heat sink[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1866-1873(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0341
    [35] ZHOU H, ZHANG X Y, ZENG H Z, et al. Lightweight structure of a phase-change thermal controller based on lattice cells manufactured by SLM[J]. Chinese Journal of Aeronautics, 2019, 32(7): 1727-1732. doi: 10.1016/j.cja.2018.08.017
    [36] OH Y K, PARK S H, CHO Y I. A study of the effect of ultrasonic vibrations on phase-change heat transfer[J]. International Journal of Heat and Mass Transfer, 2002, 45(23): 4631-4641. doi: 10.1016/S0017-9310(02)00162-X
    [37] LAN C W. Effects of axial vibration on vertical zone-melting processing[J]. International Journal of Heat and Mass Transfer, 2000, 43(11): 1987-1997. doi: 10.1016/S0017-9310(99)00264-1
    [38] VADASZ J J, MEYER J P, GOVENDER S, et al. Experimental study of vibration effects on heat transfer during solidification of paraffin in a spherical shell[J]. Experimental Heat Transfer, 2016, 29(3): 285-298. doi: 10.1080/08916152.2014.973981
    [39] BARDAN G, MOJTABI A. On the Horton-Rogers-Lapwood convective instability with vertical vibration: Onset of convection[J]. Physics of Fluids, 2000, 12(11): 2723-2731. doi: 10.1063/1.1313551
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  70
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 录用日期:  2022-04-30
  • 网络出版日期:  2022-05-19
  • 整期出版日期:  2024-01-31

目录

    /

    返回文章
    返回
    常见问答