留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

爆炸冲击波作用后变形机翼模态数值模拟

肖良丰 周兰伟 李向东

肖良丰,周兰伟,李向东. 爆炸冲击波作用后变形机翼模态数值模拟[J]. 北京航空航天大学学报,2024,50(1):341-349 doi: 10.13700/j.bh.1001-5965.2022.0244
引用本文: 肖良丰,周兰伟,李向东. 爆炸冲击波作用后变形机翼模态数值模拟[J]. 北京航空航天大学学报,2024,50(1):341-349 doi: 10.13700/j.bh.1001-5965.2022.0244
XIAO L F,ZHOU L W,LI X D. Numerical simulation of deformed airfoil modal after blast shock wave[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):341-349 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0244
Citation: XIAO L F,ZHOU L W,LI X D. Numerical simulation of deformed airfoil modal after blast shock wave[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):341-349 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0244

爆炸冲击波作用后变形机翼模态数值模拟

doi: 10.13700/j.bh.1001-5965.2022.0244
详细信息
    作者简介:

    肖良丰 男,硕士研究生。主要研究方向:毁伤评估

    周兰伟 男,博士,教授,硕士生导师。主要研究方向:目标易损性与毁伤评估

    李向东 男,博士,教授,博士生导师,主要研究方向:目标易损性与毁伤评估

    通讯作者:

    E-mail:lwzhou@njust.edu.cn

  • 中图分类号: V214.1+1;TP391.9

Numerical simulation of deformed airfoil modal after blast shock wave

More Information
  • 摘要:

    为研究典型机翼在爆炸冲击波作用下的毁伤效应及其损伤后的结构动力学特性,基于有限元方法,研究了爆炸当量、爆炸方位及爆炸距离等对典型机翼损伤程度的影响,并分析了机翼结构变形程度与模态的关系。研究结果表明:冲击波强度和作用位置的变化对机翼结构的损伤及模态频率会产生不同程度的影响;随着冲击波强度的增加,机翼结构越早产生变形,对应的各阶模态频率下降越大,其中,二阶频率最大减少了15.02%;爆炸点位于机翼中心正上方时,机翼的变形最大;与无损伤机翼模态固有频率相比,爆炸冲击波作用在机翼中心位置时,各阶模态频率减小幅度最大,减少幅度为8.29%~15.02%。

     

  • 图 1  机翼结构

    Figure 1.  Wing structure

    图 2  爆炸中心与翼展和弦长的关系

    Figure 2.  Explosion center versus wingspan and chord length

    图 3  不同强度冲击波作用后机翼结构变形云图

    Figure 3.  Deformation cloud diagram of wing structure after shock waves of different intensities

    图 4  变形量与TNT当量质量W、距离L的关系

    Figure 4.  Deformation versus TNT equivalent mass W and distance L

    图 5  爆炸点正下方机翼蒙皮节点变形

    Figure 5.  Deformation of wing skin node directly below explosion point

    图 6  冲击波作用在不同位置时机翼结构变形云图

    Figure 6.  Deformation cloud diagram of wing structure when shock wave acts on different positions

    图 7  变形量与爆炸点L/bL的关系

    Figure 7.  Deformation versus blow-up point L/b and L

    图 8  机翼上表面翼型节点的变形

    Figure 8.  Deformation of typical nodes on upper surface of wing

    图 9  不同爆炸距离时机翼结构变形云图

    Figure 9.  Cloud diagram of wing structure deformation at different explosion distances

    图 10  变形量与SL的关系

    Figure 10.  Deformation versus S and L

    图 11  机翼蒙皮典型节点变形量-时间曲线

    Figure 11.  Typical node deformation-time curves of wing skin

    图 12  无冲击损伤条件下机翼前三阶模态响应

    Figure 12.  The first third-order modal response of wing without impact damage conditions

    图 13  冲击损伤条件下机翼前三阶模态响应

    Figure 13.  The first third-order modal response of wing under impact damage conditions

    图 14  频率相对偏差与W的关系

    Figure 14.  Relative frequency deviation versus W

    图 15  频率相对偏差与爆炸点L/b的关系

    Figure 15.  Relative frequency deviation versus blow-up point L/b

    图 16  频率相对偏差与S的关系

    Figure 16.  Relative frequency deviation versus S

    表  1  机翼材料参数[21]

    Table  1.   Wing material parameters[21]

    参数 数值
    密度ρ/(g·cm−3) 2.78
    弹性模量E/GPa 73.083
    泊松比μ 0.33
    本构参数n 0.73
    本构参数C 0.0083
    本构参数m 1.7
    本构参数Tm 775.00
    本构参数Tr 300.00
    本构参数A/MPa 369.00
    本构参数B/MPa 648.00
    失效参数D1D2D3D4D5 0.13,0.13,−1.5,0.011,0
    下载: 导出CSV

    表  2  无冲击损伤机翼固有频率

    Table  2.   Natural frequency of wing without impact damage

    模态固有频率/Hz
    187.15
    2414.36
    3449.89
    下载: 导出CSV
  • [1] BALL R E. The fundamentals of aircraft combat survivability: Analysis and design[M]. Reston: AIAA, 1985.
    [2] DEHART R, BASDEKAS N. Blast response of a typical aircraft fuselage structure: AD275080[R]. Washington, D.C.: Bureau of Naval Weapons, 1962: 1-95.
    [3] SETTLES G S, BENWOOD J R, GATTO J A. Optical shock wave imaging for aviation security[C]//Proceedings of the Fluids Engineering Division Summer Meeting. New York: ASME, 2003, 36975: 113-118.
    [4] SIMMONS M C, SCHLEYER G K. Pulse pressure loading of aircraft structural panels[J]. Thin-Walled Structures, 2006, 44(5): 496-506. doi: 10.1016/j.tws.2006.05.002
    [5] DACKO A, TOCZYSKI J. Structural response of a blast loaded fuselage[J]. Journal of KONES, 2010, 17(1): 101-109.
    [6] 程帅, 刘文祥, 童念雪, 等. 爆炸载荷下飞机典型加筋结构毁伤特性[J]. 爆炸与冲击, 2021, 41(1): 88-95.

    CHENG S, LIU W X, TONG N X, et al. Damage characteristics of aircraft typical stiffened under explosive load[J]. Explosion and Shock Waves, 2021, 41(1): 88-95(in Chinese).
    [7] 韩璐, 韩庆. 飞机在模拟混合破片威力场打击下的易损性计算[J]. 航空工程进展, 2014, 5(4): 455-462. doi: 10.16615/j.cnki.1674-8190.2014.04.020

    HAN L, HAN Q. Vulnerability calculation of aircraft under simulated mixed fragment power field[J]. Advances in Aeronautical Science and Engineering, 2014, 5(4): 455-462(in Chinese). doi: 10.16615/j.cnki.1674-8190.2014.04.020
    [8] 尹文明, 任勇生. 基于ANSYS的复合材料机翼的模态分析[C]//第十七届玻璃/复合材料学术年会. 北京: 中国硅酸盐学会, 2008: 19-21.

    YIN W M, REN Y S. Modal analysis of composite wing based on ANSYS[C]//Proceedings of the Academic Annual Conference on Fiberglass/Composite Materials. Beijing: Chinese Ceramic Society, 2008: 19-21(in Chinese).
    [9] CARRERA E, MORELLO V, VALLETTA D, et al. Simulation of shock wave impact due to an explosion on a flying flexible aircraft[J]. Combustion, Explosion, and Shock Waves, 2007, 43(6): 732-740. doi: 10.1007/s10573-007-0099-x
    [10] 张媛, 胡传辉, 刘刚, 等. 冲击波和破片对直升机旋翼的联合毁伤研究[J]. 弹箭与制导学报, 2013, 33(4): 109-112. doi: 10.3969/j.issn.1673-9728.2013.04.030

    ZHANG Y, HU C H, LIU G, et al. Joint damage of helicopter rotor by the shock wave and fragment[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(4): 109-112(in Chinese). doi: 10.3969/j.issn.1673-9728.2013.04.030
    [11] 张宇, 王彬文, 白春玉. 典型飞机机翼结构爆炸冲击毁伤数值分析研究[J]. 机械设计与制造, 2022, 41(9): 1468-1474.

    ZHANG Y, WANG B W, BAI C Y. Research on numerical analysis of explosion impact damage of typical aircraft wing structure[J]. Mechanical Design and Manufacturing, 2022, 41(9): 1468-1474(in Chinese).
    [12] 冯晓伟, 卢永刚, 李永泽. 飞机目标在爆炸冲击波作用下的毁伤效应评估方法[J]. 高压物理学报, 2019, 33(4): 124-128.

    FENG X W, LU Y G, LI Y Z. Evaluation method of damage effect of aircraft target under blast shock wave[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 124-128(in Chinese).
    [13] VAZQUEZ C G, JOSHI K, BHATTACHARYA S, et al. Modal analysis of a morphing wing for unsteady flow conditions: AIAA 2020-2009[R]. Reston: AIAA, 2020.
    [14] GASPARETTO V E L, MACHADO M, CARNEIRO S H S. Experimental modal analysis of an aircraft wing prototype for SAE aerodesign competition[J]. DYNA, 2020, 87(214): 100-110.
    [15] MASINI L, TIMME S. Scale-resolving simulation of shock buffet onset physics on a civil aircraft wing[C]//Proceedings of the Applied Aerodynamics Conference. Reston: AIAA, 2018, 19: 391-409.
    [16] BANERJEE J R. Modal analysis of sailplane and transport aircraft wings using the dynamic stiffness method[J]. Journal of Physics, 2016, 15: 473-486.
    [17] NEU E, JANSEN F, KHATIB A, et al. Operational modal analysis of a wing excited by transonic flow[J]. Aerospace Science and Technology, 2016, 49: 73-79. doi: 10.1016/j.ast.2015.11.032
    [18] KERSCHEN G, PEETERS M, GOLINVAL J C, et al. Nonlinear modal analysis of a full-scale aircraft[J]. Journal of Aircraft, 2013, 50(5): 1409-1419. doi: 10.2514/1.C031918
    [19] GLOTH G, SINAPIUS M. Influence and characterization of weak non-linearities in swept-sine modal testing[J]. Aerospace Science and Technology, 2004, 8(2): 111-120. doi: 10.1016/j.ast.2003.09.005
    [20] ARQUIER R, BELLIZZI S, BOUC R, et al. Two methods for the computation of nonlinear modes of vibrating systems at large amplitudes[J]. Computers & Structures, 2006, 84(24): 1565-1576.
    [21] BUYUK M, KURTARAN H, MARZOUGUI D, et al. Automated design of threats and shields under hypervelocity impacts by using successive optimization methodology[J]. International Journal of Impact Engineering, 2008, 35(12): 1449-1458. doi: 10.1016/j.ijimpeng.2008.07.057
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  350
  • HTML全文浏览量:  130
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-15
  • 录用日期:  2022-09-23
  • 网络出版日期:  2022-10-10
  • 整期出版日期:  2024-01-31

目录

    /

    返回文章
    返回
    常见问答