Carrier aircraft landing scheduling problem based on improved gray wolf optimization
-
摘要:
针对第一类着舰模式下的舰载机着舰调度问题进行了研究,建立着舰调度模型,以最小化加权着舰延误时间和、着舰完成时间为优化目标,考虑舰载机战损程度、剩余燃油量的影响。为减轻人工调度的负担,提出一种改进灰狼优化(IGWO)算法对调度模型进行优化求解,在灰狼优化(GWO)算法的基础上,改进算法选择历史最优解灰狼个体为$\alpha $狼,引入混沌算子,设置算法参数更新控制变量,以应对GWO算法后期收敛速度慢、可能陷入局部最优解的缺点。通过不同规模着舰调度案例仿真和算法对比,验证了IGWO算法的有效性,所提算法在30、60、90机规模着舰调度案例中的优化效果均优于对比算法,证明其具备一定工程应用价值。
Abstract:The carrier aircraft landing scheduling problem under class one landing mode is studied, and a landing scheduling model is established with the optimization objectives of minimizing the weighted sum of landing delay time, and landing completion time. The model takes into account the impact of the battle damage level and fuel remaining in carrier aircraft. To reduce the burden of manual scheduling, an improved gray wolf optimization (IGWO) algorithm is proposed to optimally solve the scheduling model. In order to address the drawbacks of slow convergence in the late stages of optimization and potential falls into local optimal solutions, the improved algorithm, which is based on the gray wolf optimization (GWO) algorithm, selects the historical optimal solution gray wolf individual as wolf, introduces the chaos operator, and sets the control variable to control the updating of the algorithm parameter. The effectiveness of the IGWO algorithm is verified through the simulation and comparison with different optimization algorithms. The algorithm outperforms the comparison algorithms in the landing scheduling cases with 30, 60, and 90 aircraft, indicating that it has some engineering application value.
-
表 1 案例中使用的舰载机参数
Table 1. Parameters of carrier aircraft used in cases
i I O/L W w E/s 1 1 1 200 90 0.304 6 0 2 1 1 500 100 0.060 7 0 3 1 1 600 90 0.256 1 0 4 2 1 000 100 0.121 4 80 5 2 1 500 90 0.268 2 80 6 2 1 400 100 0.072 9 80 表 2 参数值组合
Table 2. Parameter values combinations
参数值水平 Ps e rb Nf 1 30 0.8 0.2 200 2 50 1.0 0.4 500 3 80 2.0 0.6 800 表 3 正交实验及其参数对应的$ A_{{\mathrm{RV}}}$
Table 3. Orthogonal experiments and its corresponding ${ A_{{\mathrm{RV}}}}$
实验次数 Ps e rb Nf ARV 1 30 0.8 0.2 200 0.3717 2 30 1.0 0.4 500 0.2993 3 30 2.0 0.6 800 0.4032 4 50 0.8 0.4 800 0.3401 5 50 1.0 0.6 200 0.3343 6 50 2.0 0.2 500 0.3144 7 80 0.8 0.6 500 0.3120 8 80 1.0 0.2 800 0.3665 9 80 2.0 0.4 200 0.4798 表 4 正交实验参数水平$\overline A_{{\mathrm{RV}}}$
Table 4. $\overline A_{{\mathrm{RV}}}$ of orthogonal experiments parameter level
参数值水平 取Ps对应值 取e对应值 取rb对应值 取Nf对应值 1 0.3581 0.3413 0.3509 0.3953 2 0.3296 0.3333 0.3731 0.3086 3 0.3861 0.3991 0.3498 0.3699 表 5 仿真实验结果
Table 5. Simulation experiment results
min 规模 最优值 IGWO FPDGWO[29] GWO[9] VWMPIO[30] TLBO[31] DLGA[32] 30 64.2 64.7 64.3 64.6 64.7 64.6 60 286.5 294.9 295.2 311.1 309.8 306.3 90 496.5 513 505.6 536.3 510.9 551.2 规模 平均值 IGWO FPDGWO[29] GWO[9] VWMPIO[30] TLBO[31] DLGA[32] 30 64.7 66.1 65.4 66.4 65.9 65.3 60 297 305.2 309.7 326.8 321.1 316.2 90 512 553.1 543.7 572.5 552.2 567.1 规模 最劣值 IGWO FPDGWO[29] GWO[9] VWMPIO[30] TLBO[31] DLGA[32] 30 65.7 67.5 66.5 67.9 67.3 66.1 60 303 313.2 343.3 343.6 330.8 322.5 90 545.1 584.8 596.1 588.5 573.9 581.1 -
[1] GUO F, HAN W, SU X C, et al. A bi-population immune algorithm for weapon transportation support scheduling problem with pickup and delivery on aircraft carrier deck[J]. Defence Technology, 2023, 22: 119-134. doi: 10.1016/j.dt.2021.12.006 [2] 杨巍巍. 基于多属性决策的舰载机着舰风险评估方法研究[D]. 哈尔滨: 哈尔滨商业大学, 2016.YANG W W. Research on landing risk assessment of carrier-based aircraft based on multi-attribute decision[D]. Harbin: Harbin University of Commerce, 2016(in Chinese). [3] 刘玉杰, 万兵, 苏析超, 等. 基于IABC算法的舰载机着舰调度[J]. 控制与决策, 2022, 37(7): 1810-1818. doi: 10.13195/j.kzyjc.2020.1767LIU Y J, WAN B, SU X C, et al. Scheduling of landing for carrier-based aircraft based on improved artificial bee colony algorithm[J]. Control and Decision, 2022, 37(7): 1810-1818(in Chinese). doi: 10.13195/j.kzyjc.2020.1767 [4] 刘爱东, 桂周. 基于模拟退火的PSO算法在舰载机回收中的应用[J]. 指挥控制与仿真, 2014, 36(5): 59-62. doi: 10.3969/j.issn.1673-3819.2014.05.013LIU A D, GUI Z. Application of particle swarm algorithm based on simulated annealing for carrier aircraft’s recovery[J]. Command Control & Simulation, 2014, 36(5): 59-62(in Chinese). doi: 10.3969/j.issn.1673-3819.2014.05.013 [5] 张丕旭, 邹伟. 基于Flowshop的舰载机降落调度模型研究[J]. 兵工学报, 2015, 36(增刊2): 104-107.ZHANG P X, ZOU W. The scheduling of landing carrier-borne aircrafts based on flowshop model[J]. Acta Armamentarii, 2015, 36(Sup 2): 104-107(in Chinese). [6] WU Y, SUN L G, QU X J. A sequencing model for a team of aircraft landing on the carrier[J]. Aerospace Science and Technology, 2016, 54: 72-87. doi: 10.1016/j.ast.2016.04.007 [7] 夏宏青, 焦健, 褚嘉运, 等. 基于改进GERT 的任务过程时间特性建模分析方法[J]. 北京航空航天大学学报, 2020, 46(11): 2140-2148.XIA H Q, JIAO J, CHU J Y, et al. Improved GERT based time characteristic modeling and analysis method for task process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2140-2148(in Chinese). [8] 万兵, 韩维, 梁勇, 等. 基于指标函数的舰载机机队回收调度优化研究[J]. 系统工程与电子技术, 2021, 43(10): 2918-2930.WAN B, HAN W, LIANG Y, et al. Research on optimization of carrier-based aircraft fleet recovery scheduling based on index function[J]. Systems Engineering and Electronics, 2021, 43(10): 2918-2930(in Chinese). [9] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. doi: 10.1016/j.advengsoft.2013.12.007 [10] KAMBOJ V K, BATH S K, DHILLON J S. Solution of non-convex economic load dispatch problem using grey wolf optimizer[J]. Neural Computing and Applications, 2016, 27(5): 1301-1316. doi: 10.1007/s00521-015-1934-8 [11] EMARY E, ZAWBAA H M, GROSAN C, et al. Feature subset selection approach by gray-wolf optimization[C]//Proceedings of the Afro-European Conference for Industrial Advancement. Springer: Berlin, 2015: 1-13. [12] GHOLIZADEH S. Optimal design of double layer grids considering nonlinear behaviour by sequential grey wolf algorithm[J]. Iran University of Science & Technology, 2015, 5(4): 511-523. [13] YUSOF Y, MUSTAFFA Z. Time series forecasting of energy commodity using grey wolf optimizer[C]//Proceedings of the International MultiConference of Engineers and Computer Scientists. [S.l.]: IAENG, 2015, 1: 25-30. [14] K OMAKI G M, KAYVANFAR V. Grey wolf optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time[J]. Journal of Computational Science, 2015, 8: 109-120. doi: 10.1016/j.jocs.2015.03.011 [15] MALIK M R S, MOHIDEEN E R, ALI L. Weighted distance Grey wolf optimizer for global optimization problems[C]//Proceedings of the IEEE International Conference on Computational Intelligence and Computing Research. Piscataway: IEEE Press, 2016: 1-6. [16] EMARY E, ZAWBAA H M, HASSANIEN A E. Binary grey wolf optimization approaches for feature selection[J]. Neurocomputing, 2016, 172: 371-381. doi: 10.1016/j.neucom.2015.06.083 [17] LUO Q F, ZHANG S, LI Z M, et al. A novel complex-valued encoding grey wolf optimization algorithm[J]. Algorithms, 2015, 9(1): 4. doi: 10.3390/a9010004 [18] SAREMI S, MIRJALILI S Z, MIRJALILI S M. Evolutionary population dynamics and grey wolf optimizer[J]. Neural Computing and Applications, 2015, 26(5): 1257-1263. doi: 10.1007/s00521-014-1806-7 [19] MITTAL N, SINGH U, SOHI B S. Modified grey wolf optimizer for global engineering optimization[J]. Applied Computational Intelligence and Soft Computing, 2016, 2016: 1-16. [20] TAWHID M A, ALI A F. A hybrid grey wolf optimizer and genetic algorithm for minimizing potential energy function[J]. Memetic Computing, 2017, 9(4): 347-359. doi: 10.1007/s12293-017-0234-5 [21] KAMBOJ V K. A novel hybrid PSO-GWO approach for unit commitment problem[J]. Neural Computing and Applications, 2016, 27(6): 1643-1655. doi: 10.1007/s00521-015-1962-4 [22] 姜龙光. 国外航母航空保障系统[M]. 北京: 国防工业出版社, 2016: 66.JIANG L G. Aviation support system of foreign aircraft carriers[M]. Beijing: National Defense Industry Press, 2016: 66(in Chinese). [23] ZHANG J F, ZHAO P L, ZHANG Y, et al. Criteria selection and multi-objective optimization of aircraft landing problem[J]. Journal of Air Transport Management, 2020, 82: 101734. doi: 10.1016/j.jairtraman.2019.101734 [24] DE WECK O L. Multiobjective optimization: History and promise[C]//Proceedings of the Third China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems. [S.l.]: CJK-OS, 2004, 2: 34. [25] GUNANTARA N. A review of multi-objective optimization: Methods and its applications[J]. Cogent Engineering, 2018, 5(1): 1502242. doi: 10.1080/23311916.2018.1502242 [26] SAATY T L. Fundamentals of the analytic network process: Dependence and feedback in decision-making with a single network[J]. Journal of Systems Science and Systems Engineering, 2004, 13(2): 129-157. doi: 10.1007/s11518-006-0158-y [27] KULL T J, TALLURI S. A supply risk reduction model using integrated multicriteria decision making[J]. IEEE Transactions on Engineering Management, 2008, 55(3): 409-419. doi: 10.1109/TEM.2008.922627 [28] RAZ N R, AKBARZADEH-T M R, AKBARZADEH A. Experiment-based affect heuristic using fuzzy rules and Taguchi statistical method for tuning complex systems[J]. Expert Systems with Applications, 2021, 172: 114638. doi: 10.1016/j.eswa.2021.114638 [29] DERELI S. A new modified grey wolf optimization algorithm proposal for a fundamental engineering problem in robotics[J]. Neural Computing and Applications, 2021, 33(21): 14119-14131. doi: 10.1007/s00521-021-06050-2 [30] 费伦, 段海滨, 徐小斌, 等. 基于变权重变异鸽群优化的无人机空中加油自抗扰控制器设计[J]. 航空学报, 2020, 41(1): 323490.FEI L, DUAN H B, XU X B, et al. ADRC controller design for UAV based on variable weighted mutant pigeon inspired optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 323490(in Chinese). [31] RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems[J]. Computer-Aided Design, 2011, 43(3): 303-315. doi: 10.1016/j.cad.2010.12.015 [32] LIU J, HAN J, LI J, et al. Integration design of sortie scheduling for carrier aircrafts based on hybrid flexible flowshop[J]. IEEE Systems Journal, 2020, 14(1): 1503-1511. doi: 10.1109/JSYST.2019.2922261