Multi-layer wave-shaped topology and thermal design method for aero-electric propulsion motors
-
摘要:
针对航空电推进电机的散热问题,提出一种基于多层波浪形散热拓扑的航空电推进电机高效散热设计方法。航空电推进电机采用多层波浪形散热拓扑,建立电机等效热网络模型,确定等效热阻、对流换热系数等重要参数,完成电机温度精确计算,并通过CFD仿真验证所建立电机等效热网络模型的准确性和有效性。以此为基础,对比分析传统散热翅和多层波浪形散热拓扑对电机功率密度的影响。基于多层波浪形散热拓扑的等效热网络模型,采用遗传学习粒子群优化(GL-PSO)算法,完成航空电推进电机高效散热优化设计。优化结果表明:相比于原始方案,优化方案的机壳质量减轻15.1%,整个电机的功率密度提升0.06 kW/kg。
Abstract:In view of the serious heat dissipation problem of aero-electric propulsion motors, an efficient heat dissipation design method of aero-electric propulsion motors based on multi-layer wave-shaped heat dissipation topology was proposed. The aero-electric propulsion motor adopted a multi-layer wave-shaped heat dissipation topology. In addition, the equivalent thermal network model of the motor was established, and important parameters such as contact thermal resistance and convection heat transfer coefficient were determined. The motor temperature was precisely calculated, and the accuracy and effectiveness of the thermal network model of the motor were verified by CFD simulation. On this basis, the effects of traditional fin-shaped heat dissipation topologies and multi-layer wave-shaped heat dissipation topologies on the power density of the motor were compared. Based on the equivalent thermal network model of the multi-layer wave-shaped heat dissipation topology, the genetic learning particle swarm optimization (GL-PSO) algorithm was used to optimize the efficient heat dissipation design of the aero-electric propulsion motor. The optimization results show that compared with the initial scheme, the weight of motor housing in the optimized scheme is reduced by 15.1%, and the power density of the motor is increased by 0.06 kW/kg.
-
表 1 航空电推进电机的基本参数
Table 1. Basic parameters of aero-electric propulsion motor
参数 数值 额定功率/kW 20 额定转速/(r·min−1) 3000 相数 3 定子极数 22 定子槽数 24 定子外径/mm 198 定子内径/mm 153 气隙长度/mm 1.0 转子内径/mm 128.6 定子铁心轴向长度/mm 42 表 2 多层波浪形散热结构的尺寸参数
Table 2. Dimensional parameters of multi-layer wave-shaped heat dissipation structure
参数 数值 层数 3 层间厚度/mm 0.8 波浪厚度/mm 0.8 波浪宽度/mm 6 .28 波浪数量 80 轴向长度/mm 82 表 3 电机机壳表面的对流换热系数
Table 3. Convection heat transfer coefficient of motor housing
接触面 对流换热系数/(W·(m2·℃)−1) 入风口处散热结构表面 147.70 中间段散热结构表面 91.91 出风口处散热结构表面 76.28 机壳外表面 89.08 表 4 电机的接触热阻
Table 4. Contact thermal resistance of motor
接触面 接触热阻/(℃·W−1) 定子铁心和机壳的接触面 0.043 定子铁心和定子槽绝缘层接触面 0.022 电机绕组和定子槽绝缘层接触面 0.028 永磁体和转子铁心接触面 0.013 转子铁心和转轴接触面 0.010 表 5 电机损耗
Table 5. Loss of motor
W 定子铁耗 铜耗 永磁体涡流损耗 229 451 131 表 6 电机各部分温度计算结果
Table 6. Temperature calculation results of each part of motor
电机位置 温度/℃ 机壳位置1 41.3 机壳位置2 42.5 机壳位置3 43.6 机壳位置4 44.7 机壳位置5 45.4 电机定子齿部 94.6 电机定子轭部 76.0 绕组端部最高温度 171.7 定子绕组平均温度 147.8 永磁体 114.3 转子铁心 112.7 转轴 110.6 表 7 电机热网络计算温度与CFD仿真温度对比
Table 7. Comparison of temperatures calculated by thermal network model and simulated by CFD model
电机位置 热网络计算温度/℃ CFD仿真计算温度/℃ 误差/% 机壳位置1 41.3 41.2 0.24 机壳位置2 42.5 42.3 0.47 机壳位置3 43.6 43.3 0.69 机壳位置4 44.7 44.3 0.89 机壳位置5 45.4 45.0 0.88 表 8 传统散热翅结构的尺寸参数
Table 8. Dimensional parameters of traditional fin-shaped heat dissipation structure
参数 数值 散热翅长度Flen/mm 16 散热翅宽度Fw /mm 1 散热翅间距Fgap /mm 4.5 散热翅数量Fnum 142 散热翅轴向长度Faxial/mm 82 表 9 传统散热翅结构与多层波浪形散热结构电机性能对比
Table 9. Comparison of motor performance between traditional fin-shaped heat dissipation structure and multi-layer wave-shaped heat dissipation structure
散热结构 绕组最高
温度/℃机壳
质量/kg电机
质量/kg电机整体功率
密度/(kW·kg−1)传统散热翅结构 174.6 1.83 9.17 2.18 多层波浪形散热结构 173.4 1.39 8.73 2.29 表 10 多层波浪形散热结构优化方案的尺寸参数
Table 10. Dimensional parameters of multi-layer wave-shaped heat dissipation structure in optimized scheme
参数 数值 波浪层数Flayer 3 层间厚度/mm 0.5 波浪厚度Fthk/mm 0.5 波浪宽度/mm 6.28 波浪数量Fnum2 66 轴向长度/mm 82 表 11 多层波浪形散热结构原始方案和优化方案的电机功率密度对比
Table 11. Comparison of motor power densities of multi-layer wave-shaped heat dissipation structure between original scheme and optimized scheme
方案 绕组最高
温度/℃机壳
质量/kg电机
质量/kg电机整体功率
密度/(kW·kg−1)原始方案 173.4 1.39 8.73 2.29 优化方案 178.8 1.18 8.52 2.35 -
[1] 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2018, 39(1): 021651.KONG X H, ZHANG Z R, LU J W, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 021651(in Chinese). [2] 张卓然, 于立, 李进才, 等. 飞机电气化背景下的先进航空电机系统[J]. 南京航空航天大学学报, 2017, 49(5): 622-634.ZHANG Z R, YU L, LI J C, et al. Key technologies of advanced aircraft electrical machine systems for aviation electrification[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(5): 622-634(in Chinese). [3] DONG C F, QIAN Y P, ZHANG Y J, et al. A review of thermal designs for improving power density in electrical machines[J]. IEEE Transactions on Transportation Electrification, 2020, 6(4): 1386-1400. doi: 10.1109/TTE.2020.3003194 [4] 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1): 57-68.HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 57-68(in Chinese). [5] MADONNA V, WALKER A, GIANGRANDE P, et al. Improved thermal management and analysis for stator end-windings of electrical machines[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5057-5069. doi: 10.1109/TIE.2018.2868288 [6] 付佳玉. 高速大功率永磁电机流体场与温度场的计算分析[D]. 沈阳: 沈阳工业大学, 2020: 42-45.FU J Y. Calculation and analysis of fluid field and temperature field of high-speed high-power permanent magnet motor[D]. Shenyang: Shenyang University of Technology, 2020: 42-45(in Chinese). [7] 郭恩睿. 高速永磁电机设计及基于磁热耦合的热分析[D]. 沈阳: 沈阳工业大学, 2020: 37-52.GUO E R. Design of high speed permanent magnet motor and thermal analysis based on magneto-thermal coupling[D]. Shenyang: Shenyang University of Technology, 2020: 37-52(in Chinese). [8] 鞠宇宁. 全封闭永磁同步电机温度场分析及冷却结构设计[D]. 天津: 天津大学, 2018: 45-62.JU Y N. Temperature field analysis and cooling structure design of fully enclosed permanent magnet synchronous motor[D]. Tianjin: Tianjin University, 2018: 45-62(in Chinese). [9] 汪文博. 永磁同步电机的热路模型研究[D]. 杭州: 浙江大学, 2014: 11-33.WANG W B. Lumped-parameter thermal model analysis for PMSM[D]. Hangzhou: Zhejiang University, 2014: 11-33(in Chinese). [10] TESSAROLO A, BRUZZESE C. Computationally efficient thermal analysis of a low-speed high-thrust linear electric actuator with a three-dimensional thermal network approach[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1410-1420. doi: 10.1109/TIE.2014.2341555 [11] FAN X G, LI D W, QU R H, et al. A dynamic multilayer winding thermal model for electrical machines with concentrated windings[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6189-6199. doi: 10.1109/TIE.2018.2875634 [12] KRAL C, HAUMER A, HAIGIS M, et al. Comparison of a CFD analysis and a thermal equivalent circuit model of a TEFC induction machine with measurements[J]. IEEE Transactions on Energy Conversion, 2009, 24(4): 809-818. doi: 10.1109/TEC.2009.2025428 [13] STATON D A, CAVAGNINO A. Convection heat transfer and flow calculations suitable for electric machines thermal models[J]. IEEE Transactions on Industrial Electronics, 2008, 55(10): 3509-3516. doi: 10.1109/TIE.2008.922604 [14] AHMED H E, SALMAN B H, KHERBEET A S, et al. Optimization of thermal design of heat sinks: A review[J]. International Journal of Heat and Mass Transfer, 2018, 118: 129-153. doi: 10.1016/j.ijheatmasstransfer.2017.10.099 [15] MUKKAMALA Y. Contemporary trends in thermo-hydraulic testing and modeling of automotive radiators deploying nano-coolants and aerodynamically efficient air-side fins[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 1208-1229. doi: 10.1016/j.rser.2017.03.106 [16] MESALHY O, RATH C, RINI D, et al. A parametric fin structure design study for cooling aerospace electro-mechanical actuators with high-speed axial fans[J]. Heat and Mass Transfer, 2020, 56(5): 1565-1577. doi: 10.1007/s00231-019-02791-y [17] FAN G Y, YUAN W, YAN Z G, et al. Thermal management integrated with three-dimensional heat pipes for air-cooled permanent magnet synchronous motor[J]. Applied Thermal Engineering, 2019, 152: 594-604. doi: 10.1016/j.applthermaleng.2019.02.120 [18] KONG D K, ZHANG Y C, LIU S T. Convective heat transfer enhancement by novel honeycomb-core in sandwich panel exchanger fabricated by additive manufacturing[J]. Applied Thermal Engineering, 2019, 163: 114408. doi: 10.1016/j.applthermaleng.2019.114408 [19] 王亚权. 基于田口算法的永磁同步电机多目标优化设计[D]. 秦皇岛: 燕山大学, 2018: 37-54.WANG Y Q. Multi-objective optimization design of permanent magnet synchronous motor based on Taguchi algorithm[D]. Qinhuangdao: Yanshan University, 2018: 37-54(in Chinese). [20] 王正豪. 基于改进多目标粒子群算法的无刷双馈电机优化研究与设计[D]. 沈阳: 东北大学, 2017: 46-60.WANG Z H. Optimization research and design of brushless double-fed machine based on improved multi-objective particle swarm algorithm[D]. Shenyang: Northeastern University, 2017: 46-60(in Chinese). [21] 曹雪景. 基于遗传粒子群算法的永磁同步电机多目标优化设计[D]. 合肥: 安徽大学, 2017: 45-63.CAO X J. Multi-objective optimization and design of PMSM based on genetic particle swarm algorithm[D]. Hefei: Anhui University, 2017: 45-63(in Chinese). [22] 李吉兴. 基于自适应遗传蚁群算法的永磁自启动同步电机的优化[D]. 哈尔滨: 哈尔滨理工大学, 2015: 37-54.LI J X. Optimization of line-start permanent magnet synchronous motor based on adaptive genetic ant colony algorithm[D]. Harbin: Harbin University of Science and Technology, 2015: 37-54(in Chinese). [23] 冯桂宏, 丁宏龙. 基于混合Taguchi遗传算法的永磁同步电机优化设计[J]. 电工电能新技术, 2015, 34(1): 23-27. doi: 10.3969/j.issn.1003-3076.2015.01.005FENG G H, DING H L. Optimal design of permanent magnet synchronous motor based on hybrid Taguchi genetic algorithm[J]. Advanced Technology of Electrical Engineering and Energy, 2015, 34(1): 23-27(in Chinese). doi: 10.3969/j.issn.1003-3076.2015.01.005 [24] GONG Y J, LI J J, ZHOU Y C, et al. Genetic learning particle swarm optimization[J]. IEEE Transactions on Cybernetics, 2016, 46(10): 2277-2290. doi: 10.1109/TCYB.2015.2475174 [25] WANG X, LI B, GERADA D, et al. A critical review on thermal management technologies for motors in electric cars[J]. Applied Thermal Engineering, 2022, 201: 117758. doi: 10.1016/j.applthermaleng.2021.117758 [26] LI J, LU Y, CHO Y H, et al. Design, analysis, and prototyping of a water-cooled axial-flux permanent-magnet machine for large-power direct-driven applications[J]. IEEE Transactions on Industry Applications, 2019, 55(4): 3555-3565. doi: 10.1109/TIA.2019.2907890 [27] 杜静娟. 电动汽车用高效高功率密度电机的设计与研究[D]. 天津: 天津大学, 2017: 51-89.DU J J. Design and study on high efficient high power density motor for electric vehicles application[D]. Tianjin: Tianjin University, 2017: 51-89(in Chinese) .