-
摘要:
针对高超声速飞行器再入滑翔过程的时间协同问题,提出一种基于开环式协同结构的时间协同预测校正制导律。所提制导律不依赖于各飞行器之间的实时通信,通过预先设置期望飞行时间进行协同信息共享。纵向制导律在传统预测校正的基础上进行改进,引入归一化加权误差,同时考虑剩余航程误差与剩余飞行时间误差,采用全弹道积分预测剩余航程和剩余飞行时间,每个制导周期通过牛顿迭代法求解倾侧角幅值,完成兼顾时间协同和空间精度的纵向制导过程。仿真实例表明:通过选择合适的加权误差系数,所提制导律可实现对再入飞行时间的有效调节,导引多飞行器在期望飞行时间到达指定再入交班点。蒙特卡罗仿真验证了所提制导律的鲁棒性。
Abstract:For the hypersonic vehicle, a time coordination predictor-corrector guidance approach based on an open-loop coordination structure is presented to achieve the time coordination of the entry gliding process. The guidance method does not depend on real-time communication between the vehicles. The longitudinal guidance is modified on the basis of the traditional predictor-corrector guidance method. The normalized weighted error is introduced to consider both the remaining range error and flight time error obtained by calculating the full ballistic integral. To implement longitudinal guiding, Newton’s iterative approach is used to calculate the bank angle amplitude in each guidance circle. The simulations show that the guidance method can effectively adjust the flight time of the vehicle and guide multiple vehicles to reach the entry point at the expected flight time. The Monte Carlo results also demonstrate the robustness of the proposed guidance method.
-
表 1 六飞行器时间协同再入任务
Table 1. Six vehicles time coordinated entry mission
F1 起始点 F2 起始点 F3 起始点 F4 起始点 F5 起始点 F6 起始点 初始航
向角/(°)初始航
迹角/(°)初始
高度/km初始
速度/( m·s−1)目标点 $ {\text{(E6}}{\text{.}}{{\text{5}}^{\text{o}}}{\text{, N7}}{\text{.}}{{\text{5}}^{\text{o}}}) $ $ {\text{(E}}{{\text{7}}^{\text{o}}}{\text{, N}}{{\text{8}}^{\text{o}}}) $ $ {\text{(E}}{{\text{6}}^{\text{o}}}{\text{, N8}}{\text{.}}{{\text{5}}^{\text{o}}}) $ $ {\text{(E6}}{\text{.}}{{\text{5}}^{\text{o}}}{\text{, N}}{{\text{8}}^{\text{o}}}) $ $ {\text{(E}}{{\text{7}}^{\text{o}}}{\text{, N7}}{\text{.}}{{\text{5}}^{\text{o}}}) $ $ {\text{(E7}}{\text{.}}{{\text{5}}^{\text{o}}}{\text{, N7}}{\text{.}}{{\text{5}}^{\text{o}}}) $ 31 −1 72 6100 $ {\text{(E5}}{{\text{0}}^{\text{o}}}{\text{, N5}}{{\text{0}}^{\text{o}}}) $ 表 2 六飞行器协同再入结果
Table 2. Six vehicles coordinated entry results
飞行器编号 $ {t_{{\text{expect}}}} $/s Law1实际时间/s Law2实际时间/s 加权误差系数$ p $ Law1航程误差/km Law2航程误差/km 时间调节/s F1 1680 1680 1680 1 5.61 5.61 0 F2 1680 1653 1680 0.55 3.42 6.94 27 F3 1680 1658 1680 0.6 4.16 2.2 22 F4 1680 1663 1680 0.75 4.82 5.01 17 F5 1680 1670 1680 0.85 5.52 5.02 10 F6 1680 1660 1680 0.65 4.37 3.54 20 表 3 三飞行器延时发射协同再入任务
Table 3. Three vehicles delay-launch coordinated entry mission
起始点 初始航向角/(°) 初始航迹角/(°) 初始高度/km 初始速度/(m·s−1) 期望到达时刻$ {t_{{\text{end}}}} $/s 目标点 $ {\text{(E3}}{{\text{5}}^{\text{o}}}{\text{, S}}{{\text{2}}^{\text{o}}}) $ 11 −1 72 6100 1626 $ {\text{(E5}}{{\text{0}}^{\text{o}}}{\text{, N5}}{{\text{0}}^{\text{o}}}) $ 表 4 三飞行器延时发射协同再入结果
Table 4. Results of three vehicles delay-launch coordinated entry mission
飞行器编号 出发时刻$ {t_0} $/s 期望到达时刻$ {t_{{\text{end}}}} $/s 期望飞行时间$ {t_{{\text{expect}}}} $/s Law2 实际飞行时间/s 加权误差系数$ p $ 航程误差/km 时间调节/s F1 0 1626 1626 1626 1 3.98 0 F2 10 1626 1616 1616 0.9 5.79 10 F3 20 1626 1606 1606 0.75 6.02 20 表 5 再入点参数拉偏
Table 5. Parameter deviation of the reentry interface
初始
高度/km初始
速度/(m·s−1)经度/(°) 纬度/(°) 飞行航
迹角/(°)飞行航
向角/(°)2 50 0.2 0.2 0.2 2 -
[1] 刘思源, 梁子璇, 任章, 等. 高超声速滑翔飞行器再入段制导方法综述[J]. 中国空间科学技术, 2016, 36(6): 1-13.LIU S Y, LIANG Z X, REN Z, et al. Review of re-entry guidance methods for hypersonic gliding vehicles[J]. Chinese Space Science and Technology, 2016, 36(6): 1-13(in Chinese). [2] 赵江, 周锐. 基于倾侧角反馈控制的预测校正再入制导方法[J]. 兵工学报, 2015, 36(5): 823-830. doi: 10.3969/j.issn.1000-1093.2015.05.009ZHAO J, ZHOU R. Predictor-corrector re-entry guidance based on feedback bank angle control[J]. Acta Armamentarii, 2015, 36(5): 823-830(in Chinese). doi: 10.3969/j.issn.1000-1093.2015.05.009 [3] 方科, 张庆振, 倪昆, 等. 高超声速飞行器时间协同再入制导[J]. 航空学报, 2018, 39(5): 202-217. doi: 10.7527/S1000-6893.2018.21958FANG K, ZHANG Q Z, NI K, et al. Time-coordinated re-entry guidance law for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 202-217(in Chinese). doi: 10.7527/S1000-6893.2018.21958 [4] 赵建博, 杨树兴. 多导弹协同制导研究综述[J]. 航空学报, 2017, 38(1): 17-29.ZHAO J B, YANG S X. Review of multi-missile cooperative guidance[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 17-29(in Chinese). [5] JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2): 260-266. doi: 10.1109/TCST.2005.863655 [6] HARL N, BALAKRISHNAN S N. Impact time and angle guidance with sliding mode control[J]. IEEE Transactions on Control Systems Technology, 2011, 20(6): 1436-1449. [7] 赵世钰, 周锐. 基于协调变量的多导弹协同制导[J]. 航空学报, 2008, 29(6): 1605-1611.ZHAO S Y, ZHOU R. Multi-missile cooperative guidance using coordination variables[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1605-1611(in Chinese). [8] 张友安, 马国欣, 王兴平. 多导弹时间协同制导: 一种领弹-被领弹策略[J]. 航空学报, 2009, 30(6): 1109-1118. doi: 10.3321/j.issn:1000-6893.2009.06.023ZHANG Y A, MA G X, WANG X P. Time-cooperative guidance for multi-missiles: A leader-follower strategy[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 1109-1118(in Chinese). doi: 10.3321/j.issn:1000-6893.2009.06.023 [9] 李征, 陈海东, 彭博, 等. 可重复使用航天器再入协同制导研究[J]. 导弹与航天运载技术, 2021(3): 71-77.LI Z, CHEN H D, PENG B, et al. Coordinated reentry guidance law for reusable launch vehicle[J]. Missles and Space Vehicles, 2021(3): 71-77(in Chinese). [10] 姜鹏, 郭栋, 韩亮, 等. 多飞行器再入段时间协同弹道规划方法[J]. 航空学报, 2020, 41(S1): 171-183. doi: 10.7527/S1000-6893.2019.23776JIANG P, GUO D, HAN L, et al. Trajectory optimization for co-operative re-entry of multiple hypersonic glide vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 171-183 (in Chinese). doi: 10.7527/S1000-6893.2019.23776 [11] LIANG Z, YU J, REN Z, et al. Trajectory planning for cooperative flight of two hypersonic entry vehicles[C]//Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017: 2251. [12] 王肖, 郭杰, 唐胜景, 等. 基于解析剖面的时间协同再入制导[J]. 航空学报, 2019, 40(3): 239-250.WANG X, GUO J, TANG S J, et al. Time-cooperative entry guidance based on analytical profile[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 239-250(in Chinese). [13] 王浩凝, 唐胜景, 郭杰, 等. 带有动态攻角剖面的时间约束再入制导[J]. 空天防御, 2021, 4(1): 71-76. doi: 10.3969/j.issn.2096-4641.2021.01.012WANG H N, TANG S J, GUO J, et al. Time-constrained reentry guidance with dynamic angle of attack profile[J]. Air & Space Defense, 2021, 4(1): 71-76(in Chinese). doi: 10.3969/j.issn.2096-4641.2021.01.012 [14] 乔浩, 毛瑞, 白凤科, 等. 带时间约束的双参数再入轨迹设计方法[J]. 弹箭与制导学报, 2021, 41(3): 57-61.QIAO H, MAO R, BAI F K, et al. A Two-parameter reentry trajectory design method with time constraints[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2021, 41(3): 57-61(in Chinese). [15] LI Z H, HE B, WANG M H, et al. Time-coordination entry gui-dance for multi-hypersonic vehicles[J]. Aerospace Science andTechnology, 2019, 89: 123-135. [16] YU J L, DONG X W, LI Q D, et al. Cooperative guidance strategy for multiple hypersonic gliding vehicles system[J]. Chinese Journal of Aeronautics, 2020, 33(3): 990-1005. doi: 10.1016/j.cja.2019.12.003 [17] 方科, 张庆振, 倪昆, 等. 飞行时间约束下的再入制导律[J]. 哈尔滨工业大学学报, 2019, 51(10): 90-97. doi: 10.11918/j.issn.0367-6234.201808104FANG K, ZHANG Q Z, NI K, et al. Reentry guidance law with flight time constraint[J]. Journal of Harbin Institute of Technology, 2019, 51(10): 90-97(in Chinese). doi: 10.11918/j.issn.0367-6234.201808104 [18] LU P. Entry guidance: A unified method[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 713-728. doi: 10.2514/1.62605 [19] ZHAO J, ZHOU R, JIN X L. Gauss pseudospectral method applied to multi-objective spacecraft trajectory optimization[J]. Journal of Computational and Theoretical Nanoscience, 2014, 11(10): 2242-2246. doi: 10.1166/jctn.2014.3685