留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四旋翼飞行器的RBF神经网络鲁棒自适应控制

马振伟 白浩 陈洪波 王劲博

马振伟,白浩,陈洪波,等. 四旋翼飞行器的RBF神经网络鲁棒自适应控制[J]. 北京航空航天大学学报,2024,50(5):1620-1628 doi: 10.13700/j.bh.1001-5965.2022.0595
引用本文: 马振伟,白浩,陈洪波,等. 四旋翼飞行器的RBF神经网络鲁棒自适应控制[J]. 北京航空航天大学学报,2024,50(5):1620-1628 doi: 10.13700/j.bh.1001-5965.2022.0595
MA Z W,BAI H,CHEN H B,et al. RBF neural network robust adaptive control of quadrotor aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1620-1628 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0595
Citation: MA Z W,BAI H,CHEN H B,et al. RBF neural network robust adaptive control of quadrotor aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1620-1628 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0595

四旋翼飞行器的RBF神经网络鲁棒自适应控制

doi: 10.13700/j.bh.1001-5965.2022.0595
详细信息
    通讯作者:

    E-mail:chenhongbo@mail.sysu.edu.cn

  • 中图分类号: V275.1;TP183

RBF neural network robust adaptive control of quadrotor aircraft

More Information
  • 摘要:

    针对具有模型不确定性和有界外部扰动的四旋翼飞行器,提出了一种基于径向基函数神经网络的鲁棒自适应全局控制方法(RRAC)。所提方法结合了神经网络控制对未知非线性的强拟合能力和鲁棒控制的全局稳定性,解决了神经网络控制仅能实现半全局一致最终有界的问题,实现了控制精度和鲁棒性的双重提升。所设计的控制器由在近似域内工作的神经网络控制器和在近似域外工作的鲁棒控制器组成。引入一种新型切换函数来实现两者之间的平滑切换,以保证闭环系统的所有信号是全局一致最终有界的。利用Lyapunov函数和Barbalat引理严格证明了非线性四旋翼飞行器系统的稳定性。仿真表明,所设计的控制器在模型不确定性和有界外部扰动下对参考轨迹依旧保持良好的跟踪性能,且跟踪误差趋近于零。

     

  • 图 1  开关函数M(x)

    Figure 1.  Switching function M(x)

    图 2  闭环控制系统结构

    Figure 2.  Closed-loop system structure

    图 3  无扰动下的位置跟踪曲线

    Figure 3.  Position tracking curve without disturbance

    图 4  无扰动下的位置跟踪误差曲线

    Figure 4.  Position tracking error curve without disturbance

    图 5  无扰动下的速度曲线

    Figure 5.  The velocity curve without disturbance

    图 6  无扰动下的姿态角跟踪曲线

    Figure 6.  Attitude angle tracking curve without disturbance

    图 7  无扰动下的姿态角跟踪误差曲线

    Figure 7.  Attitude angle tracking error curve without disturbance

    图 8  无扰动下的飞行器姿态角速率曲线

    Figure 8.  The attitude angular rate curve without disturbance

    图 9  无扰动下的控制曲线

    Figure 9.  Control curve without disturbance

    图 10  含扰动下的位置跟踪曲线

    Figure 10.  Position tracking curve with disturbance

    图 11  含扰动下的位置跟踪误差曲线

    Figure 11.  Position tracking error curve with disturbance

    图 12  含扰动下的速度曲线

    Figure 12.  The velocity curve with disturbance

    图 13  含扰动下的姿态角跟踪曲线

    Figure 13.  Attitude angle tracking curve with disturbance

    图 14  含扰动下的姿态角跟踪误差曲线

    Figure 14.  Attitude angle tracking error curve with disturbance

    图 15  含扰动下的飞行器姿态角速率曲线图

    Figure 15.  The attitude angular rate curve with disturbance

    图 16  含扰动下的控制曲线

    Figure 16.  Control curve with disturbance

  • [1] 陈梅香, 张瑞瑞, 陈立平, 等. 无人机农林业应用全球研究态势分析[J]. 智慧农业(中英文), 2021, 3(3): 22-37.

    CHEN M X, ZHANG R R, CHEN L P, et al. Investigation on advances of unmanned aerial vehicle application research in agriculture and forestry[J]. Smart Agriculture, 2021, 3(3): 22-37(in Chinese).
    [2] MU B X, ZHANG K W, SHI Y. Integral sliding mode flight controller design for a quadrotor and the application in a heterogeneous multi-agent system[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12): 9389-9398. doi: 10.1109/TIE.2017.2711575
    [3] 闫超, 涂良辉, 王聿豪, 等. 无人机在我国民用领域应用综述[J]. 飞行力学, 2022, 40(3): 1-6,12.

    YAN C, TU L H, WANG Y H, et al. Application of unmanned aerial vehicle in civil field in China[J]. Flight Dynamics, 2022, 40(3): 1-6,12(in Chinese).
    [4] ZUO Z Y, RU P K. Augmented L1 adaptive tracking control of quad-rotor unmanned aircrafts[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 3090-3101. doi: 10.1109/TAES.2014.120705
    [5] LIU H, LI D J, ZUO Z Y, et al. Robust three-loop trajectory tracking control for quadrotors with multiple uncertainties[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2263-2274.
    [6] ZHAO B, XIAN B, ZHANG Y, et al. Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 2891-2902. doi: 10.1109/TIE.2014.2364982
    [7] 姚博誉, 路平, 杨森, 等. 四旋翼飞行器飞行控制技术综述[J]. 航空兵器, 2020, 27(1): 9-16. doi: 10.12132/ISSN.1673-5048.2019.0046

    YAO B Y, LU P, YANG S, et al. An overview of flight control technology for quadrotor aircrafts[J]. Aero Weaponry, 2020, 27(1): 9-16(in Chinese). doi: 10.12132/ISSN.1673-5048.2019.0046
    [8] YU W W, WEN G H, CHEN G R, et al. Distributed cooperative control of multi-agent systems[M]. Singapore: Wiley, 2016.
    [9] 李佳琪, 刘晨, 黄明, 等. 四旋翼无人机位置与姿态控制研究发展综述[J]. 南方农机, 2021, 52(12): 25-27. doi: 10.3969/j.issn.1672-3872.2021.12.008

    LI J Q, LIU C, HUANG M, et al. Overview of research and development on position and attitude control of quadrotor UAV[J]. China Southern Agricultural Machinery, 2021, 52(12): 25-27(in Chinese). doi: 10.3969/j.issn.1672-3872.2021.12.008
    [10] DYDEK Z T, ANNASWAMY A M, LAVRETSKY E. Adaptive control of quadrotor UAVs: a design trade study with flight evaluations[J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1400-1406. doi: 10.1109/TCST.2012.2200104
    [11] MU B X, CHEN J C, SHI Y, et al. Design and implementation of nonuniform sampling cooperative control on a group of two-wheeled mobile robots[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 5035-5044. doi: 10.1109/TIE.2016.2638398
    [12] WEN G H, ZHAO Y, DUAN Z S, et al. Containment of higher-order multi-leader multi-agent systems: a dynamic output approach[J]. IEEE Transactions on Automatic Control, 2016, 61(4): 1135-1140. doi: 10.1109/TAC.2015.2465071
    [13] MU B X, LI H X, DING J, et al. Consensus in second-order multiple flying vehicles with random delays governed by a Markov chain[J]. Journal of the Franklin Institute, 2015, 352(9): 3628-3644. doi: 10.1016/j.jfranklin.2015.01.034
    [14] ZHAO E J, CHAO T, WANG S Y, et al. Finite-time formation control for multiple flight vehicles with accurate linearization model[J]. Aerospace Science and Technology, 2017, 71: 90-98. doi: 10.1016/j.ast.2017.08.018
    [15] HUA C C, CHEN J N, LI Y F. Leader-follower finite-time formation control of multiple quadrotors with prescribed performance[J]. International Journal of Systems Science, 2017, 48(12): 2499-2508. doi: 10.1080/00207721.2017.1323135
    [16] ZHU Z C, PAN Y N, ZHOU Q, et al. Event-triggered adaptive fuzzy control for stochastic nonlinear systems with unmeasured states and unknown backlash-like hysteresis[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(5): 1273-1283. doi: 10.1109/TFUZZ.2020.2973950
    [17] LIN X L, WU C F, CHEN B S. Robust H adaptive fuzzy tracking control for MIMO nonlinear stochastic Poisson jump diffusion systems[J]. IEEE Transactions on Cybernetics, 2019, 49(8): 3116-3130. doi: 10.1109/TCYB.2018.2839364
    [18] RODRÍGUEZ-MATA A E, GONZÁLEZ-HERNÁNDEZ I, RANGEL-PERAZA J G, et al. Wind-gust compensation algorithm based on high-gain residual observer to control a quadrotor aircraft: real-time verification task at fixed point[J]. International Journal of Control, Automation and Systems, 2018, 16(2): 856-866. doi: 10.1007/s12555-016-0771-6
    [19] LABBADI M, BOUKAL Y, CHERKAOUI M, et al. Fractional-order global sliding mode controller for an uncertain quadrotor UAVs subjected to external disturbances[J]. Journal of the Franklin Institute, 2021, 358(9): 4822-4847. doi: 10.1016/j.jfranklin.2021.04.032
    [20] WANG L, JIA H M. The trajectory tracking problem of quadrotor UAV: global stability analysis and control design based on the cascade theory[J]. Asian Journal of Control, 2014, 16(2): 574-588. doi: 10.1002/asjc.746
    [21] SHENG S Z, SUN C W. An adaptive attitude tracking control approach for an unmanned helicopter with parametric uncertainties and measurement noises[J]. International Journal of Control, Automation and Systems, 2016, 14(1): 217-228. doi: 10.1007/s12555-014-0244-8
    [22] LIU J, GAI W D, ZHANG J, et al. Nonlinear adaptive backstepping with ESO for the quadrotor trajectory tracking control in the multiple disturbances[J]. International Journal of Control, Automation and Systems, 2019, 17(11): 2754-2768. doi: 10.1007/s12555-018-0909-9
    [23] DAS A, LEWIS F, SUBBARAO K. Dynamic neural network-based robust backstepping control approach for quadrotors[C]// Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit. Reston: AIAA, 2008: 1-17.
    [24] DIERKS T, JAGANNATHAN S. Output feedback control of a quadrotor UAV using neural networks[J]. IEEE Transactions on Neural Networks, 2010, 21(1): 50-66. doi: 10.1109/TNN.2009.2034145
    [25] XU R, ÖZGÜNER Ü. Sliding mode control of a class of underactuated systems[J]. Automatica, 2008, 44(1): 233-241. doi: 10.1016/j.automatica.2007.05.014
  • 加载中
图(16)
计量
  • 文章访问数:  454
  • HTML全文浏览量:  157
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-07
  • 录用日期:  2022-08-14
  • 网络出版日期:  2022-10-09
  • 整期出版日期:  2024-05-29

目录

    /

    返回文章
    返回
    常见问答