留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

舰载直升机主动甲板着舰气动载荷特性

谭剑锋 邢肖兵 崔钊 武杰 张卫国

谭剑锋,邢肖兵,崔钊,等. 舰载直升机主动甲板着舰气动载荷特性[J]. 北京航空航天大学学报,2024,50(7):2206-2217 doi: 10.13700/j.bh.1001-5965.2022.0615
引用本文: 谭剑锋,邢肖兵,崔钊,等. 舰载直升机主动甲板着舰气动载荷特性[J]. 北京航空航天大学学报,2024,50(7):2206-2217 doi: 10.13700/j.bh.1001-5965.2022.0615
TAN J F,XING X B,CUI Z,et al. Investigation on aerodynamics of a helicopter approaching an active control deck[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2206-2217 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0615
Citation: TAN J F,XING X B,CUI Z,et al. Investigation on aerodynamics of a helicopter approaching an active control deck[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2206-2217 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0615

舰载直升机主动甲板着舰气动载荷特性

doi: 10.13700/j.bh.1001-5965.2022.0615
基金项目: 国家自然科学基金(12172165);江苏省自然科学基金(BK20211259);江苏省青蓝工程“优秀青年骨干教师”项目
详细信息
    通讯作者:

    E-mail:Jianfengtan@njtech.edu.cn

  • 中图分类号: V221.52;TB553

Investigation on aerodynamics of a helicopter approaching an active control deck

Funds: National Natural Science Foundation of China (12172165); Natural Science Foundation of Jiangsu Province (BK20211259); Outstanding Young Backbone Teacher Project of Jiangsu Qinglan Project
More Information
  • 摘要:

    被动与主动流动控制可减小舰艇艉流强度,但直升机着舰甲板处仍存在明显回流现象,由此导致直升机气动载荷变化显著。提出了自动升降的舰艇主动甲板,建立基于格子玻尔兹曼方法(LBM)的舰艇主动甲板流场分析方法,并结合单向耦合模型,嵌入旋翼黏性涡粒子法,研究直升机主动甲板着舰气动载荷特性。通过与SFS2舰艇流场试验、分离涡模拟(DES)方法、大涡模拟(LES)方法比较,验证了所建方法的准确性。随后研究主动甲板对舰艇流场和直升机着舰气动载荷的影响特性。结果表明:相比于标准SFS2舰艇,主动甲板有效抑制了直升机着舰甲板处回流,以及直升机旋翼拉力损失、滚转和俯仰力矩,最大降幅分别为21.6%、55.1%、74.6%。

     

  • 图 1  SFS2舰艇ACD

    Figure 1.  SFS2 frigate with an ACD

    图 2  直升机着舰过程

    Figure 2.  Landing procedure with a helicopter

    图 3  速度空间离散的D3Q19格子模型

    Figure 3.  D3Q19 lattice used for the velocity space discretization

    图 4  舰艇典型位置处速度分布

    Figure 4.  Velocity distribution at typical location of ship

    图 5  SFS2舰艇对称面流场分布

    Figure 5.  Flowfield of SFS2 at centerline

    图 6  ACD对舰艇对称截面流场的影响

    Figure 6.  Influence of the ACD on the flow field at centerline

    图 7  舰艇流场示意图

    Figure 7.  Schematic of the ship flow

    图 8  ACD对舰艇机库高度垂向速度的影响

    Figure 8.  Influence of the ACD on the vertical velocity at top of the hangar door

    图 9  各风向ACD对舰艇机库高度垂向速度的影响

    Figure 9.  Influence of the ACD on the vertical velocity at top of the hangar with different wind directions

    图 10  侧风舰艇流场示意图

    Figure 10.  Schematic of the ship flow at crosswind

    图 11  ACD对舰艇艉流的影响(风向左舷30°)

    Figure 11.  Influence of the ACD on the ship airwake at θ=−30°to port

    图 12  ACD对直升机着舰尾流的影响

    Figure 12.  Influence of the ACD on wake of shipborne helicopter

    图 13  ACD对旋翼载荷的影响

    Figure 13.  Influence of the ACD on the rotor airloads

    图 14  桨叶特征剖面气动载荷系数(r/R=0.75)

    Figure 14.  Blade sectional thrust coefficient (r/R =0.75)

    图 15  旋翼气动载荷随风向的变化

    Figure 15.  Variations of rotor airloads at different wind directions

    图 16  风向角示意图

    Figure 16.  Schematic of wind direction

    图 17  左舷30º风向的甲板流场

    Figure 17.  Flow field of deck at θ=−30° wind direction on port side

    图 18  右舷30º风向的旋翼气动力

    Figure 18.  Aerodynamics of rotor at θ=−30°wind direction on port side

  • [1] NEDA T, DANIELE Z, ALEX Z, et al. Experimental study of a helicopter model in shipboard operations[J]. Aerospace Science and Technology, 2021, 115: 106774. doi: 10.1016/j.ast.2021.106774
    [2] OWEN I, LEE R, WALL A, et al. The NATO generic destroyer–A shared geometry for collaborative research into modelling and simulation of shipboard helicopter launch and recovery[J]. Ocean Engineering, 2021, 228: 108428. doi: 10.1016/j.oceaneng.2020.108428
    [3] 李旭, 祝小平, 周洲, 等. 动基座近舰面流场数值模拟[J]. 航空学报, 2018, 39(12): 122131.

    LI X, ZHU X P, ZHOU Z, et al. Numerical simulation of flow field during landing for carrier-based aircraft near a moving base[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 122131(in Chinese).
    [4] CROZON C, STEIJL R, BARAKOS G N. Coupled flight dynamics and CFD–demonstration for helicopters in shipborne environment[J]. The Aeronautical Journal, 2018, 122(1247): 42-82. doi: 10.1017/aer.2017.112
    [5] FORREST J S, OWEN I. An investigation of ship airwakes using detached-eddy simulation[J]. Computers & Fluids, 2010, 39(4): 656-673.
    [6] SHAFER D, GHEE T. Active and passive flow control over the flight deck of small naval vessels[C]//Proceedings of the 35th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2005: 5265.
    [7] FINDLA D B, GHEE T. Experimental investigation of ship airwake flow control for a US navy flight II-A class destroyer (DDG)[C]//Proceedings of the 3rd AIAA Flow Control Conference. Reston: AIAA, 2006: 1-10.
    [8] GREENWELL D, BARRETT R. Inclined screens for control of ship air wakes[C]// Proceedings of the 3rd AIAA Flow Control Conference. Reston: AIAA, 2006: 3502.
    [9] BARDERA R, MESEGUER J. Flow in the near air wake of a modified frigate[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(6): 1003-1012. doi: 10.1177/0954410014542449
    [10] FORREST J S, KAARIA C H, OWEN I. Determining the impact of hangar-edge modifications on ship-helicopter operations using offline and piloted helicopter flight simulation[C]//American Helicopter Society 66th Annual Forum. Montreal: AHS, 2010: 11-13.
    [11] SHI Y J, HE X, XU Y, et al. Numerical study on flow control of ship airwake and rotor airload during helicopter shipboard landing[J]. Chinese Journal of Aeronautics, 2019, 32(2): 324-336. doi: 10.1016/j.cja.2018.12.020
    [12] BARDERA-MORA R, CONESA A, LOZANO I. Simple frigate shape plasma flow control[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230(14): 2693-2699. doi: 10.1177/0954410016630333
    [13] SHI Y J, SU D C, XU G H. Numerical investigation of the influence of passive/active flow control on ship/helicopter dynamic interface[J]. Aerospace Science and Technology, 2020, 106: 106205. doi: 10.1016/j.ast.2020.106205
    [14] 李光印, 徐国华, 史勇杰, 等. 主动射流控制对直升机着舰飞行的影响分析[J]. 哈尔滨工业大学学报, 2021, 53(12): 68-79.

    LI G Y, XU G H, SHI Y J, et al. Influence of active flow control on shipborne helicopter landing[J]. Journal of Harbin Institute of Technology, 2021, 53(12): 68-79(in Chinese).
    [15] BARDERA J, MATIAS J C. A comparison of helicopter recovery maneuvers on frigates by means of PIV measurements[J]. Ocean Engineering, 2021, 219: 108393. doi: 10.1016/j.oceaneng.2020.108393
    [16] KOELMAN J M V A. A simple lattice boltzmann scheme for navier-stokes fluid flow[J]. Europhysics Letters (EPL), 1991, 15(6): 603-607. doi: 10.1209/0295-5075/15/6/007
    [17] RANDLES A P, KALE V, HAMMOND J, et al. Performance analysis of the lattice boltzmann model beyond navier-stokes[C]//Proceedings of the 2013 IEEE 27th International Symposium on Parallel and Distributed Processing. Piscataway: IEEE Press, 2013: 1063-1074.
    [18] LÉVÊQUE E, TOSCHI F, SHAO L, et al. Shear-improved Smagorinsky model for large-eddy simulation of wall-bounded turbulent flows[J]. Journal of Fluid Mechanics, 2007, 570: 491-502. doi: 10.1017/S0022112006003429
    [19] DOOLEY G, EZEQUIEL MARTIN J, BUCHHOLZ J H J, et al. Ship airwakes in waves and motions and effects on helicopter operation[J]. Computers & Fluids, 2020, 208: 104627.
    [20] 谭剑锋, 周天熠, 王畅, 等. 旋翼地面效应的气动建模与特性[J]. 航空学报, 2019, 40(6): 122602.

    TAN J F, ZHOU T Y, WANG C, et al. Aerodynamic model and characteristics of rotor in ground effect[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 122602(in Chinese).
    [21] 谭剑锋, 何龙, 于领军, 等. 基于粘性涡粒子VVPM/沙粒DEM的直升机沙盲建模研究[J]. 航空学报, 2022, 43(3): 125536.

    TAN J F, HE L, YU L J, et al. Investigation on method of helicopter brownout based on viscous vortex particle and sand particle DEM[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 125536(in Chinese).
    [22] CHENEY B, ZAN S. CFD code validation data and flow topology for the technical co-operation program AER-TP2 simple frigate shape NRCIAR-LTR-A-035[R]. Ottawa: National Research Council of Canada Technical Report NRCIAR-LTR-A-035, 1999.
    [23] QUON E W, CROSS P A, SMITH M J. Investigation of ship airwakes using a hybrid computational methodology[C]//Proceedings of the AHS 70th Annual Forum. Montreal: AHS, 2014: 3001-3014.
    [24] THEDIN R, KINZEL M P, SCHMITZ S. High-fidelity simulations of the interaction of atmospheric turbulence with ship airwakes[C]//Proceedings of the AHS International 73rd Annual Forum & Technology Display. Montreal: AHS, 2017: 1-14.
  • 加载中
图(18)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  93
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-13
  • 录用日期:  2022-09-05
  • 网络出版日期:  2022-10-09
  • 整期出版日期:  2024-07-18

目录

    /

    返回文章
    返回
    常见问答