-
摘要:
锂离子电池涉水事件频发,特别是沿海地区及海事应用方面常常遇到高盐度涉水事件。以18650型电池为样本,进行不同盐度条件下涉水锂离子电池的腐蚀与析氢风险实验研究。结果表明:锂离子电池涉水时首先发生电解和电化学腐蚀现象,盐度越高,这种现象越显著;腐蚀主要发生在阳极帽处,随着腐蚀进行,腐蚀孔向内部深入,直至电池彻底损坏;涉水中锂离子电池的质量损失速率与电压降呈正相关关系;腐蚀产物主要为氢氧化亚铁、氢氧化铁和氢氧化铝;涉水过程中阴极析出大量氢气,氢气产生速率与盐溶液浓度呈正相关关系;对于较封闭的应用环境极易达到氢气爆炸下限;轻度腐蚀后电池热失控过程的喷射程度较为剧烈,燃爆危险性较高;而过度腐蚀则会直接破坏电池结构,进而使电池完全失效。
Abstract:Lithium-ion battery wading events occur frequently, especially, often suffering high salinity wading events in coastal areas and maritime operations. In this paper, 18650 model batteries were used as samples to carry out experiments on the risk of corrosion and hydrogen evolution of waded lithium-ion batteries under different salinity conditions. The findings indicate that soaking lithium-ion batteries in an aqueous sodium chloride solution triggers the onset of electrolytic and electrochemical corrosion. The higher the salinity of the solution, the more significant this phenomenon is. The corrosion mainly occurs at the anode cap. With corrosion developing, the corrosion hole goes deep into the interior until the battery is completely damaged. There is a positive correlation between the mass loss rate and voltage drop of lithium battery in the wading process. Aluminum hydroxide, ferrous hydroxide, and ferric hydroxide make up the majority of the corrosion products. In the process, a large amount of hydrogen emerges from the cathode, and the hydrogen generation rate has a positive linear relationship with the concentration of salt solution. For relatively narrow space, it is very easy to reach the lower limit of a hydrogen explosion. After mild corrosion, the injection degree of the thermal runaway process of the battery is more severe, and the risk of combustion and explosion is relatively high. Furthermore, extreme corrosion will directly damage the battery's construction, rendering it totally useless.
-
Key words:
- lithium ion battery /
- safety /
- wading /
- battery performance /
- thermal runaway /
- hydrogen evolution
-
表 1 电池参数
Table 1. battery parameters
品牌 标称电压/V 截止电压/V 容量/(mA·h) 长度/mm 高度/mm 三星UNG 3.6 2.75 2200 65.0 18.4 表 2 A组实验电池样品的电压和质量数据
Table 2. Voltage and weight data of battery samples in A group
编号 浸泡时长/min 初始质量/g 初始电压/V A21 10 40.99 4.09 A22 20 41.02 4.09 A23 30 41.36 4.08 A24 60 41.14 4.09 A25 120 41.07 4.09 A26 180 40.97 4.08 A27 240 41.17 4.08 A28 360 41.11 4.08 A29 480 40.98 4.09 表 3 B组实验电池样品的电压和质量数据
Table 3. Voltage and weight data of battery samples in B group
编号 质量分数 初始质量/g 初始电压/V B11 0 41.01 4.09 B12 0.01 40.97 4.09 B13 0.015 41.03 4.09 B14 0.02 41.13 4.08 B15 0.025 40.89 4.09 B16 0.03 40.98 4.09 B17 0.035 41.04 4.08 表 4 氢气体积分数拟合方程
Table 4. Linear fitting equation of hydrogen concentration
NaCl质量分数 拟合曲线 相关系数r 0.01 CH = 3.64t − 374.66 0.998 23 0.015 CH = 6.36t + 1 053.76 0.999 39 0.02 CH = 7.95t + 629.80 0.999 92 0.025 CH = 9.30t + 800.29 0.999 92 0.03 CH = 11.58t + 1 049.58 0.999 52 0.035 CH = 13.77t + 654.06 0.999 75 注:CH为氢气体积分数;t为反应时间,单位s。 表 5 1 L受限空间中的NaCl溶液质量分数与析氢速率
Table 5. Relationship between hydrogen generation rate and solution salinity in 1 L confined space
NaCl溶液质量分数 析氢速率/(10−6·s−1) 0.01 5.82 0.015 10.18 0.02 12.72 0.025 14.88 0.03 18.53 0.035 20.03 -
[1] 何艺, 王兆龙, 鲍伟, 等. 2021年我国电池材料需求情况研究[J]. 电池工业, 2022, 26(4): 201-206.HE Y, WANG Z L, BAO W, et al. Discussion on the demand of battery materials in China in 2021[J]. Chinese Battery Industry, 2022, 26(4): 201-206(in Chinese). [2] 宋文龙, 罗秋月, 何艺, 等. 2021年我国电池产销情况[J]. 电池工业, 2022, 26(2): 85-89.SONG W L, LUO Q Y, HE Y, et al. Production and sales of batteries in China in 2021[J]. Chinese Battery Industry, 2022, 26(2): 85-89(in Chinese). [3] 孙延先, 姜兆华. 锂离子电池模组过充热失控扩散仿真[J]. 电池, 2019, 49(6): 481-484.SUN Y X, JIANG Z H. Simulation of thermal runaway diffusion in overcharging of Li-ion battery module[J]. Battery Bimonthly, 2019, 49(6): 481-484(in Chinese). [4] 邢学彬, 袁德强, 王占国, 等. 不同触发条件下的钛酸锂电池热失控特性研究[J]. 消防科学与技术, 2021, 40(6): 787-792.XING X B, YUAN D Q, WANG Z G, et al. Research on the thermal runaway characteristics of lithium titanate batteries under different trigger conditions[J]. Fire Science and Technology, 2021, 40(6): 787-792(in Chinese). [5] 毛亚, 白清友, 马尚德, 等. 循环老化对锂离子电池在绝热条件下的产热及热失控影响[J]. 储能科学与技术, 2018, 7(6): 1120-1127.MAO Y, BAI Q Y, MA S D, et al. Influence of cycling on the heat-release and thermal runaway of the lithium ion battery under adiabatic condition[J]. Energy Storage Science and Technology, 2018, 7(6): 1120-1127(in Chinese). [6] 陈现涛, 赵一帆, 张旭, 等. 不同外部热源及气压对软包装锂离子电池热失控影响[J]. 消防科学与技术, 2022, 41(1): 15-20.CHEN X T, ZHAO Y F, ZHANG X, et al. Influence of different external heat power and air pressure on thermal runaway of pouch lithium-ion batteries[J]. Fire Science and Technology, 2022, 41(1): 15-20(in Chinese). [7] 陈天雨, 高尚, 冯旭宁, 等. 锂离子电池热失控蔓延研究进展[J]. 储能科学与技术, 2018, 7(6): 1030-1039.CHEN T Y, GAO S, FENG X N, et al. R Recent progress on thermal runaway propagation of lithium-ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1030-1039(in Chinese). [8] FINEGAN D P, SCHEEL M, ROBINSON J B, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J]. Nature Communications, 2015, 6: 6924. doi: 10.1038/ncomms7924 [9] RIBIÈRE P, GRUGEON S, MORCRETTE M, et al. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry[J]. Energy & Environmental Science, 2012, 5(1): 5271-5280. [10] CHO J, JUNG Y C, LEE Y S, et al. High performance separator coated with amino-functionalized SiO2 particles for safety enhanced lithium-ion batteries[J]. Journal of Membrane Science, 2017, 535: 151-157. doi: 10.1016/j.memsci.2017.04.042 [11] DENG Y M, WANG Z, MA Z, et al. Positive-temperature-coefficient graphite anode as a thermal runaway firewall to improve the safety of LiCoO2/graphite batteries under abusive conditions[J]. Energy Technology, 2020, 8(3): 1901037. doi: 10.1002/ente.201901037 [12] WANG Q F, LIU P P, LI S Z, et al. A flame retardant ionic conductor additive for safety-reinforced liquid electrolyte of lithium batteries[J]. Journal of the Electrochemical Society, 2017, 164(7): A1559-A1563. doi: 10.1149/2.1111707jes [13] SAID A O, LEE C, STOLIAROV S I, et al. Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium ion cell arrays[J]. Applied Energy, 2019, 248: 415-428. doi: 10.1016/j.apenergy.2019.04.141 [14] PIAO C H, WANG Z G, CAO J, et al. Lithium-ion battery cell-balancing algorithm for battery management system based on real-time outlier detection[J]. Mathematical Problems in Engineering, 2015, 2015: 168529. [15] GALLARDO-LOZANO J, ROMERO-CADAVAL E, MILANES-MONTERO M I, et al. A novel active battery equalization control with on-line unhealthy cell detection and cell change decision[J]. Journal of Power Sources, 2015, 299: 356-370. doi: 10.1016/j.jpowsour.2015.09.005 [16] XU J, CAO B G, LI S Y, et al. A hybrid criterion based balancing strategy for battery energy storage systems[J]. Energy Procedia, 2016, 103: 225-230. doi: 10.1016/j.egypro.2016.11.277 [17] LOPEZ C F, JEEVARAJAN J A, MUKHERJEE P P. Experimental analysis of thermal runaway and propagation in lithium-ion battery modules[J]. Journal of the Electrochemical Society, 2015, 162(9): A1905-A1915. doi: 10.1149/2.0921509jes [18] 吴娟, 钱傲然, 林荷娟. 应对极端暴雨洪水与提升防洪安全韧性研究: 以太湖流域为例[J]. 中国水利, 2024(8): 25-32.WU J, QIAN A R, LIN H J. Research on coping with extreme rainstorm flood and enhancing flood safety resilience—Taking the Taihu Basin as an example[J]. China Water Resources, 2024(8): 25-32(in Chinese). [19] 贾燕, 杨明, 严睿恺. 台风“烟花” 决策气象服务特色经验及技术探究[J]. 气象科技进展, 2023, 13(1): 56-60.JIA Y, YANG M, YAN R K. Characteristic experiences and technologies of decision-making meteorological service for typhoon IN-FA[J]. Advances in Meteorological Science and Technology, 2023, 13(1): 56-60(in Chinese). [20] 方斯顿, 王鸿东, 张军军. 船舶大容量储能系统应用研究综述[J]. 中国舰船研究, 2022, 17(6): 22-35.FANG S D, WANG H D, ZHANG J J. A review of shipboard large-scale energy storage systems[J]. Chinese Journal of Ship Research, 2022, 17(6): 22-35 (in Chinese). [21] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电动汽车用动力蓄电池安全要求及试验方法: GB/T 31485—2015[S]. 北京: 中国标准出版社, 2015.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Safety requirements and test methods for traction battery of electric vehicle: GB/T 31485—2015[S]. Beijing: Standards Press of China, 2015(in Chinese). [22] DOUGHTY D, CRAFTS C. Abuse test manual for electric and Hybrid electric vehicle applications[J]. ECS Meeting Abstracts, 2006, 2(2): 77. [23] 宗磊, 盛军. 锂离子动力电池系统的浸水试验及分析[J]. 北京汽车, 2020, 45(1): 22-26.ZONG L, SHENG J. Submergence test of Li-ion power battery system[J]. Beijing Automotive Engineering, 2020, 45(1): 22-26(in Chinese). [24] 张晨佳, 蔡军, 张玉魁, 等. 基于热力学平衡的高温固体氧化物电解水制氢模拟[J]. 太阳能学报, 2021, 42(9): 210-217.ZHANG C J, CAI J, ZHANG Y K, et al. Simulation of high temperature solid oxide water electrolysis for hydrogen production based on thermodynamic equilibrium[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 210-217(in Chinese). [25] 张青松, 赵子恒, 白伟. 过充条件下三元锂离子电池热安全性分析[J]. 消防科学与技术, 2020, 39(5): 713-717.ZHANG Q S, ZHAO Z H, BAI W. Thermal safety analysis on ternary lithium ion battery under overcharge conditions[J]. Fire Science and Technology, 2020, 39(5): 713-717(in Chinese).