留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于迁移学习的齿轮箱开放集跨工况故障诊断

马翔 许庶 尚芃超 马剑 周汝志

马翔,许庶,尚芃超,等. 基于迁移学习的齿轮箱开放集跨工况故障诊断[J]. 北京航空航天大学学报,2024,50(5):1753-1760 doi: 10.13700/j.bh.1001-5965.2022.0719
引用本文: 马翔,许庶,尚芃超,等. 基于迁移学习的齿轮箱开放集跨工况故障诊断[J]. 北京航空航天大学学报,2024,50(5):1753-1760 doi: 10.13700/j.bh.1001-5965.2022.0719
MA X,XU S,SHANG P C,et al. Fault diagnosis of gearbox under open set and cross working condition based on transfer learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1753-1760 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0719
Citation: MA X,XU S,SHANG P C,et al. Fault diagnosis of gearbox under open set and cross working condition based on transfer learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1753-1760 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0719

基于迁移学习的齿轮箱开放集跨工况故障诊断

doi: 10.13700/j.bh.1001-5965.2022.0719
基金项目: 中央高校基本科研业务费专项资金(YWF-22-L-516);民用飞机专项科研(MJ-2018-Y-58)
详细信息
    通讯作者:

    E-mail:09977@buaa.edu.cn

  • 中图分类号: V240.2

Fault diagnosis of gearbox under open set and cross working condition based on transfer learning

Funds: The Fundamental Research Funds for the Central Universities (YWF-22-L-516); Special Research on Civil Aircraft (MJ-2018-Y-58)
More Information
  • 摘要:

    随着工业与航空航天技术的不断发展,齿轮箱等旋转机械的工况与故障模式逐渐趋于多样化、复杂化,可靠性与安全性问题日益突出,大量工况数据缺乏故障标签,且不同工况间故障模式不对称,迫切需要研究有效的故障诊断方法。以齿轮箱为案例验证对象,设置跨工况和开放集故障诊断场景,针对目标工况故障标签匮乏的问题,提出利用迁移学习将源工况的知识迁移到目标工况,利用交叉熵分类损失函数对已知故障类型进行识别的方法;针对跨工况条件下故障模式不对称的开放集问题,提出利用卷积神经网络提取工况间的相似数据特征,利用二分类损失函数对目标工况的已知类与未知类进行分类的方法。提出联合损失函数,训练诊断模型,实现故障特征从源域到目标域的联合迁移。案例分析结果表明:所提方法能够实现开放集情况下的跨工况故障诊断,且平均诊断准确度在90%以上。

     

  • 图 1  封闭集和开放集迁移学习分类任务场景对比

    Figure 1.  Scenario comparison of closed-set and open-set migration learning classification tasks

    图 2  基于J-CNN的开放集跨工况迁移故障诊断方法流程

    Figure 2.  J-CNN-based open-set cross-condition migration fault diagnosis methodology process

    图 3  基于J-CNN的开放集跨工况迁移故障诊断模型结构示意图

    Figure 3.  Schematic structure of open-set cross-condition migration fault diagnosis model based on J-CNN

    图 4  二级减速齿轮箱组成结构

    Figure 4.  Composition of secondary reduction gearbox

    图 5  35~40 Hz不同目标域工况数据占比诊断结果

    Figure 5.  Diagnostic results of percentage of working condition data in different target domains from 35 Hz to 40 Hz

    表  1  减速齿轮箱不同故障模式注入情况对比

    Table  1.   Comparison of different failure mode injections in reduction gearboxes

    齿轮箱部件 故障模式 是否正常 故障1 故障2 故障3
    齿轮32T正常裂纹正常正常
    96T正常正常正常正常
    48T正常偏心偏心正常
    80T正常正常断齿正常
    输入正常正常正常不平衡
    输出正常正常正常正常
    轴承轴承1正常正常滚动体正常
    轴承2正常正常正常滚动体
    轴承3正常正常正常外圈
    轴承4正常正常正常正常
    轴承5正常正常正常正常
    轴承6正常正常正常正常
    下载: 导出CSV

    表  2  基于DANN的开放集故障诊断任务设置及诊断结果

    Table  2.   DANN-based open-set fault diagnosis task setup and diagnostic results

    任务 跨工况情况 源域故障模式数 目标域故障模式数 准确度/%
    P130~35 Hz5689.51
    P2485.64
    P3389.64
    P4278.85
    P5176.25
    P635~30 Hz5673.04
    P7472.16
    P8383.57
    P9280.15
    P10181.93
    下载: 导出CSV
  • [1] SIAHPOUR S, LI X, LEE J. Deep learning-based cross-sensor domain adaptation for fault diagnosis of electro-mechanical actuators[J]. International Journal of Dynamics and Control, 2020, 8: 1054-1062. doi: 10.1007/s40435-020-00669-0
    [2] MOSLEM A, JASKARAN S, LI X, et al. Cross-domain gearbox diagnostics under variable working conditions with deep convolutional transfer learning[J]. Journal of Vibration and Control, 2020, 27(7-8): 854-864.
    [3] ZHANG W, LI X, MA H, et al. Open set domain adaptation in machinery fault diagnostics using instance-level weighted adversarial learning[J]. IEEE Transactions on Industrial Informatics, 2021, 17(11): 7445-7455. doi: 10.1109/TII.2021.3054651
    [4] 陈宏, 邓芳明, 吴翔, 等. 基于梯度提升决策树的电力电子电路故障诊断[J]. 测控技术, 2017, 36(5): 9-12. doi: 10.3969/j.issn.1000-8829.2017.05.003

    CHEN H, DENG F M, WU X, et al. Fault diagnosis of power electronics circuit based on gradient boosting decision tree[J]. Measurement & Control Technology, 2017, 36(5): 9-12(in Chinese). doi: 10.3969/j.issn.1000-8829.2017.05.003
    [5] 王廷轩, 刘韬, 王振亚, 等. 融合迁移卷积神经网络的跨域滚动轴承故障诊断[J]. 电子测量技术, 2021, 44(10): 167-174.

    WANG T X, LIU T, WANG Z Y, et al. Cross-domain rolling bearing fault diagnosis based on convolutional neural network combined with transfer learning[J]. Electronic Measurement Technology, 2021, 44(10): 167-174(in Chinese).
    [6] 洪晓翠, 段礼祥, 杨晓光, 等. 智能优化算法在机械故障诊断领域 的应用综述[J]. 测控技术, 2021, 40(7): 1-8.

    HONG X C, DUAN L X, YANG X G, et al. Review on the application of intelligent optimization algorithms in mechanical fault diagnosis[J]. Measurement & Control Technology, 2021, 40(7): 1-8(in Chinese).
    [7] 张根保, 李浩, 冉琰, 等. 一种用于轴承故障诊断的迁移学习模型[J]. 吉林大学学报(工学版), 2020, 50(5): 1617-1626.

    ZHANG G B, LI H, RAN Y, et al. A transfer learning model for bearing fault diagnosis[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(5): 1617-1626(in Chinese).
    [8] 刘应东, 刘韬, 李华, 等. 变工况轴承的联合分布适应迁移故障诊断[J]. 电子测量与仪器学报, 2021, 35(5): 69-75.

    LIU Y D, LIU T, LI H, et al. Transfer fault diagnosis of bearings under variable working conditions based on joint distribution adaptation[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(5): 69-75(in Chinese).
    [9] 毕爽. 基于深度迁移学习的风电机组齿轮箱故障诊断方法研究[D]. 长春: 长春大学, 2021.

    BI S. Research on fault diagnosis method of wind turbine gearbox based on deep transfer learning[D]. Changchun: Changchun University, 2021(in Chinese).
    [10] 陈仁祥, 杨星, 胡小林, 等. 深度置信网络迁移学习的行星齿轮箱故障诊断方法[J]. 振动与冲击, 2021, 40(1): 127-133.

    CHEN R X, YANG X, HU X L, et al. Planetary gearbox fault diagnosis method based on deep belief network transfer learning[J]. Journal of Vibration and Shock, 2021, 40(1): 127-133(in Chinese).
    [11] CAO P, ZHANG S L, TANG J. Preprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learning[J]. IEEE Access, 2018, 6: 26241-26253. doi: 10.1109/ACCESS.2018.2837621
    [12] MA P, ZHANG H L, FAN W H, et al. A novel bearing fault diagnosis method based on 2D image representation and transfer learning-convolutional neural network[J]. Measurement Science and Technology, 2019, 30: 055402. doi: 10.1088/1361-6501/ab0793
    [13] CHEN Z Y, HE G L, LI J P, et al. Domain adversarial transfer network for cross-domain fault diagnosis of rotary machinery[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(11): 8702-8712. doi: 10.1109/TIM.2020.2995441
    [14] ZHAO C, SHEN W M. Dual adversarial network for cross-domain open set fault diagnosis[J]. Reliability Engineering & System Safety, 2022, 221: 108358.
    [15] 文成林, 吕菲亚. 基于深度学习的故障诊断方法综述[J]. 电子与信息学报, 2020, 42(1): 234-248. doi: 10.11999/JEIT190715

    WEN C L, LV F Y. Review on deep learning based fault diagnosis[J]. Journal of Electronics & Information Technology, 2020, 42(1): 234-248(in Chinese). doi: 10.11999/JEIT190715
    [16] CHEN W Q, QIU Y N, FENG Y H, et al. Diagnosis of wind tur-bine faults with transfer learning algorithms[J]. Renewable Energy, 2021, 163: 2053-2067. doi: 10.1016/j.renene.2020.10.121
    [17] PENG C, LI L L, CHEN Q, et al. A fault diagnosis method for rolling bearings based on parameter transfer learning under imbalance data sets[J]. Energies, 2021, 14(4): 1-18.
    [18] BUSTO P P, GALL J. Open set domain adaptation[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 754-763.
    [19] LI X, ZHANG W, DING Q, et al. Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation[J]. Journal of Intelligent Manufacturing, 2020, 31(2): 433-452. doi: 10.1007/s10845-018-1456-1
    [20] TANG S N, YUAN S Q, ZHU Y. Deep learning-based intelligent fault diagnosis methods toward rotating machinery[J]. IEEE Access, 2020, 8: 9335-9346. doi: 10.1109/ACCESS.2019.2963092
    [21] LI F, TANG T J, TANG B P, et al. Deep convolution domain-adversarial transfer learning for fault diagnosis of rolling bearings[J]. Measurement, 2021, 169: 108339. doi: 10.1016/j.measurement.2020.108339
    [22] 郭瑜, 童丽娜, 倪旭明. 基于改进卷积神经网络的电力通信网故障诊断研究[J]. 计算机测量与控制, 2022, 30(2): 24-30.

    GUO Y, TONG L N, YAN X M. Research on fault diagnosis of electric power communication network based on improved convolutional neural network[J]. Computer Measurement & Control, 2022, 30(2): 24-30(in Chinese).
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  509
  • HTML全文浏览量:  259
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-17
  • 录用日期:  2022-09-23
  • 网络出版日期:  2022-12-28
  • 整期出版日期:  2024-05-29

目录

    /

    返回文章
    返回
    常见问答