留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变马赫数下的内并联式TBCC模态转换控制

于华锋 郭迎清 王佳美

于华锋,郭迎清,王佳美. 变马赫数下的内并联式TBCC模态转换控制[J]. 北京航空航天大学学报,2024,50(11):3456-3462 doi: 10.13700/j.bh.1001-5965.2022.0827
引用本文: 于华锋,郭迎清,王佳美. 变马赫数下的内并联式TBCC模态转换控制[J]. 北京航空航天大学学报,2024,50(11):3456-3462 doi: 10.13700/j.bh.1001-5965.2022.0827
YU H F,GUO Y Q,WANG J M. Mode transition control of over-under TBCC under variable Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3456-3462 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0827
Citation: YU H F,GUO Y Q,WANG J M. Mode transition control of over-under TBCC under variable Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3456-3462 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0827

变马赫数下的内并联式TBCC模态转换控制

doi: 10.13700/j.bh.1001-5965.2022.0827
基金项目: 国家科技重大专项(J2019-V-0003-0094)
详细信息
    通讯作者:

    E-mail:yqguo@nwpu.edu.cn

  • 中图分类号: V233.7+5;TB553

Mode transition control of over-under TBCC under variable Mach number

Funds: National Science and Technology Major Project (J2019-V-0003-0094)
More Information
  • 摘要:

    随着高超声速技术的发展,涡轮基组合循环(TBCC)发动机越来越受到重视。模态转换是制约TBCC发动机投入实用的障碍之一,有必要对这个过程中的控制方式进行研究。提出一种模型综合方式,实现一维进气道、冲压发动机及涡轮发动机的综合迭代,基于MATLAB/Simulink环境构建了适用于控制系统设计的TBCC模型。对单模态控制系统进行分析,在最小改动原则上提出模态转换控制器架构;通过线性矩阵不等式(LMI)工具给出控制器设计方法。给出变马赫数仿真的意义,通过2.5~3马赫数下的模态转换仿真验证了控制系统。仿真结果表明:控制系统可以保证TBCC发动机处于安全状态,变马赫数模态转换阶段推力波动小于4.2%。

     

  • 图 1  内并联TBCC发动机结构

    Figure 1.  Structure of over-under TBCC engine

    图 2  单个模态下控制原理

    Figure 2.  Control principle under single mode

    图 3  模态转换控制器结构

    Figure 3.  Structure of mode transition controller

    图 4  发动机工作状态示意图

    Figure 4.  Schematic diagram of engine working state

    图 5  变马赫数下的模态转换仿真结果

    Figure 5.  Mode transition simulation result under variable Mach number

    图 6  冲压发动机尾喷管回路模态转换仿真结果

    Figure 6.  Simulation results of mode transition of ramjet nozzle loop

  • [1] DING Y B, YUE X K, CHEN G S, et al. Review of control and guidance technology on hypersonic vehicle[J]. Chinese Journal of Aeronautics, 2022, 35(7): 1-18. doi: 10.1016/j.cja.2021.10.037
    [2] AN H, LIU J X, WANG C H, et al. Disturbance observer-based antiwindup control for air-breathing hypersonic vehicles[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3038-3049. doi: 10.1109/TIE.2016.2516498
    [3] LE D, VRNAK D, SLATER J, et al. A framework for simulating turbine-based combined-cycle inlet mode-transition[C]//Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2012.
    [4] LYU G L, GAO Z X, QIAN Z S, et al. Studies on unsteady mode transition of a turbine based combined cycle (TBCC) inlet with multiple movable panels[J]. Aerospace Science and Technology, 2021, 111: 106546. doi: 10.1016/j.ast.2021.106546
    [5] DALLE D J, DRISCOLL J F, TORREZ S M. Ascent trajectories of hypersonic aircraft: Operability limits due to engine unstart[J]. Journal of Aircraft, 2015, 52(4): 1345-1354. doi: 10.2514/1.C032801
    [6] 宋自航, 唐海龙, 陈敏. 高超声速并联TBCC总体性能分析与模态转换仿真[J]. 航空发动机, 2019, 45(1): 33-39.

    SONG Z H, TANG H L, CHEN M. Overall performance analysis and modal conversion simulation of hypersonic parallel TBCC[J]. Aeroengine, 2019, 45(1): 33-39(in Chinese).
    [7] 张明阳, 周莉, 王占学, 等. 外并联式TBCC发动机模态转换性能模拟与分析[J]. 推进技术, 2018, 39(11): 2429-2437.

    ZHANG M Y, ZHOU L, WANG Z X, et al. Simulation and analysis of mode transition performance for an over-under TBCC engine[J]. Journal of Propulsion Technology, 2018, 39(11): 2429-2437(in Chinese).
    [8] 张明阳, 王占学, 刘增文, 等. Mach 4一级内并联式TBCC发动机模态转换性能分析[J]. 推进技术, 2017, 38(2): 315-322.

    ZHANG M Y, WANG Z X, LIU Z W, et al. Analysis of mode transition performance for a Mach 4 over-under TBCC engine[J]. Journal of Propulsion Technology, 2017, 38(2): 315-322(in Chinese).
    [9] CSANK J, STUEBER T. A turbine based combined cycle engine inlet model and mode transition simulation based on HiTECC tool[C]//Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2012.
    [10] QIU X J, SU W S, TANG Y T. The mode switch control research of small-type parallel TBCC engine based on SQP method[C]//Proceedings of the AIAA Modeling and Simulation Technologies Conference. Reston: AIAA, 2015.
    [11] 聂聆聪, 李岩, 戴冬红, 等. 涡轮冲压组合发动机模态转换多变量控制研究[J]. 推进技术, 2017, 38(5): 968-974.

    NIE L C, LI Y, DAI D H, et al. Study on mode transition multi-variable control for turbine-based combined cycle engine[J]. Journal of Propulsion Technology, 2017, 38(5): 968-974(in Chinese).
    [12] 刘君, 袁化成, 郭荣伟. 内并联式TBCC进气道模态转换过程流动特性分析[J]. 宇航学报, 2016, 37(4): 461-469.

    LIU J, YUAN H C, GUO R W. Analysis of over/under TBCC inlet mode transition flow characteristic[J]. Journal of Astronautics, 2016, 37(4): 461-469(in Chinese).
    [13] YU H F, GUO Y Q. Modeling and simulation of parallel TBCC aircraft/engine integrated system[C]//Proceedings of the 39th Chinese Control Conference. Piscataway: IEEE Press, 2020: 6899-6903.
    [14] 王伟. 冲压发动机建模及参数测量方案研究[D]. 西安: 西北工业大学, 2012: 13-18.

    WANG W. Modeling and parameter measurement scheme research of ramjet engine[D]. Xi’an: Northwestern Polytechnical University, 2012: 13-18(in Chinese).
    [15] 麻莉莉, 马静. 基于LMI的航空发动机鲁棒弹性保性能控制[J]. 测控技术, 2014, 33(5): 90-93.

    MA L L, MA J. Robust and resilient guaranteed cost control of aero-engine based on LMI[J]. Measurement & Control Technology, 2014, 33(5): 90-93(in Chinese).
    [16] 张海波, 孙立国, 孙健国. 直升机/涡轴发动机综合系统鲁棒抗扰控制设计[J]. 航空学报, 2010, 31(5): 883-892.

    ZHANG H B, SUN L G, SUN J G. Robust disturbance rejection control design for integrated helicopter system/turbo-shaft engine[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 883-892(in Chinese).
  • 加载中
图(6)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  93
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-04
  • 录用日期:  2023-01-05
  • 网络出版日期:  2023-02-08
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答