留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

永磁超环面电机优化三矢量模型预测电流控制

刘欣 王正阳 王晓远

刘欣,王正阳,王晓远. 永磁超环面电机优化三矢量模型预测电流控制[J]. 北京航空航天大学学报,2024,50(11):3297-3309 doi: 10.13700/j.bh.1001-5965.2022.0833
引用本文: 刘欣,王正阳,王晓远. 永磁超环面电机优化三矢量模型预测电流控制[J]. 北京航空航天大学学报,2024,50(11):3297-3309 doi: 10.13700/j.bh.1001-5965.2022.0833
LIU X,WANG Z Y,WANG X Y. Optimization three-vector-based model predictive current control for permanent magnet toroidal motor[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3297-3309 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0833
Citation: LIU X,WANG Z Y,WANG X Y. Optimization three-vector-based model predictive current control for permanent magnet toroidal motor[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3297-3309 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0833

永磁超环面电机优化三矢量模型预测电流控制

doi: 10.13700/j.bh.1001-5965.2022.0833
基金项目: 国家自然科学基金(51875408);天津市研究生科研创新项目(2021YJSB229)
详细信息
    通讯作者:

    E-mail:liuxin@tiangong.edu.cn

  • 中图分类号: TM351

Optimization three-vector-based model predictive current control for permanent magnet toroidal motor

Funds: National Natural Science Foundation of China (51875408); Tianjin Research Innovation Project for Postgraduate Students (2021YJSB229)
More Information
  • 摘要:

    为提高传统预测电流控制下永磁超环面电机系统的稳态输出性能,研究了永磁超环面电机优化三矢量模型预测电流控制(OTV-MPCC)策略。基于永磁超环面电机的结构原理,在旋转坐标系下建立该电机具有时变参数的数学模型,分析结构参数对电机输出的影响。针对含有时变参数的永磁超环面电机系统,采用永磁超环面电机OTV-MPCC策略,在一个采样周期内作用3个电压矢量,同时通过遍历5种三矢量组合选取第二最优电压矢量,减少电流预测迭代。将永磁超环面电机OTV-MPCC策略与占空比模型预测电流控制(DR-MPCC)策略、双矢量模型预测电流控制(TV-MPCC)策略进行仿真对比,结果表明:OTV-MPCC策略可有效降低永磁超环面电机的电流与转矩脉动,提高稳态输出性能。

     

  • 图 1  永磁超环面电机的结构示意图

    Figure 1.  Structural diagram of permanent magnet toroidal motor

    图 2  行星轮磁齿的运动轨迹

    Figure 2.  Motion track of magnetic teeth on planet

    图 3  等效电流示意图

    Figure 3.  Schematic diagram of equivalent current

    图 4  输出受结构参数的影响

    Figure 4.  Influence of structural parameters on output

    图 5  三相两电平逆变器及其电压矢量

    Figure 5.  Three-phase two-level inverter and voltage vectors

    图 6  逆变器的三相脉冲示意图

    Figure 6.  Three-phase pulse diagram of inverter

    图 7  永磁超环面电机OTV-MPCC系统结构框图

    Figure 7.  Block diagram of OTV-MPCC system for permanent magnet toroidal motor

    图 8  永磁超环面电机OTV-MPCC系统流程

    Figure 8.  Flow diagram of OTV-MPCC system for permanent magnet toroidal motor

    图 9  电压矢量选择范围示意图

    Figure 9.  Schematic diagram of voltage vector selection range

    图 10  三相蜗杆电流波形

    Figure 10.  Three-phase worm currents waveform

    图 11  a相蜗杆电流频谱

    Figure 11.  Harmonic spectra of a-phase worm current

    图 12  稳态条件下的输出波形

    Figure 12.  Output waveforms at steady-state conditions

    图 13  不同转速时3种控制策略下的电流脉动

    Figure 13.  Current ripples with three control strategies at different speeds

    图 14  转速变化时的动态响应

    Figure 14.  Dynamic response at speed change

    图 15  突加负载时的动态响应

    Figure 15.  Dynamic response at sudden load application

    表  1  电压矢量选择

    Table  1.   Voltage vector selection

    Uopx Uy Uz
    U1 U2, U3, U4, U5, U6 U0U7
    U2 U1, U3, U4, U5, U6 U0U7
    U3 U1, U2, U4, U5, U6 U0U7
    U4 U1, U2, U3, U5, U6 U0U7
    U5 U1, U2, U3, U4, U6 U0U7
    U6 U1, U2, U3, U4, U5 U0U7
    下载: 导出CSV

    表  2  控制策略的比较

    Table  2.   Comparison of control strategies

    控制策略 电压矢量
    数目
    电流预测
    次数
    电压矢量的
    选择范围
    作用时间的
    计算方式
    DR-MPCC 2 6 方向固定
    幅值可调
    q轴电流
    无差拍
    TV-MPCC 2 15 方向可调
    幅值可调
    q轴电流
    无差拍
    OTV-MPCC 3 11 方向可调
    幅值可调
    d-q轴电流
    无差拍
    下载: 导出CSV

    表  3  永磁超环面电机参数

    Table  3.   Parameters of permanent magnet toroidal motor

    参数 数值
    R 3.8
    np1 4
    z3 28
    z2 12
    φv/(°) 90
    k1 0.3
    k2 5
    B/(N·m·s) 0.001
    J/(kg·m2) 0.0015
    $L_{{\mathrm{s}}0}' $/H 0.012
    $L_{{\mathrm{s}}2}' $/H 0.004
    $L_{{\mathrm{s}}2}'' $/H 0.003
    Udc/V 380
    $ \psi _{\mathrm{f}} $/Wb 0.26
    下载: 导出CSV
  • [1] 刘佳敏, 葛召炎, 吴轩, 等. 基于占空比调制的永磁同步电机预测电流控制[J]. 中国电机工程学报, 2020, 40(10): 3319-3328.

    LIU J M, GE Z Y, WU X, et al. Predictive current control of permanent magnet synchronous motor based on duty-cycle modulation[J]. Proceedings of the CSEE, 2020, 40(10): 3319-3328(in Chinese).
    [2] LIU S Y, LIU C H. Virtual-vector-based robust predictive current control for dual three-phase PMSM[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2048-2058. doi: 10.1109/TIE.2020.2973905
    [3] 赵亚辉, 冯明, 李卫文. 基于SMO的改进型转子位置检测方法[J]. 北京航空航天大学学报, 2020, 46(12): 2329-2338.

    ZHAO Y H, FENG M, LI W W. Improved rotor position detection method based on SMO[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2329-2338(in Chinese).
    [4] ZENG X L, YAO L G, ZHANG J, et al. Mathematical modeling and characteristics analysis of the toroidal drive with elastic deformation in the conjugating process[J]. IEEE Access, 2020, 7: 131234-131247.
    [5] 郝秀红, 朱学军, 许立忠. 机电集成超环面传动系统参数振动研究[J]. 振动与冲击, 2013, 32(22): 113-118.

    HAO X H, ZHU X J, XU L Z. Parametric vibration of an electromechanical integrated toroidal drive[J]. Journal of Vibration and Shock, 2013, 32(22): 113-118(in Chinese).
    [6] XU L Z, FU L P. Toroidal drive with half stator[J]. Advances in Mechanical Engineering, 2015, 7(6): 1687814015589270.
    [7] XU L Z, LI R, SONG W T. Permanent magnetic toroidal drive with half stator[J]. Advances in Mechanical Engineering, 2017, 9(1): 1687814016686316.
    [8] LIU X, SUN M P, WANG X Y. Analysis of end-effect force and weakening method for permanent magnet toroidal motor[J]. IEEE Transactions on Magnetics, 2020, 56(12): 8200707.
    [9] 刘欣, 许立忠, 聂岭. 新型超环面混合励磁电机的结构及特性分析[J]. 中国电机工程学报, 2015, 35(20): 5335-5343.

    LIU X, XU L Z, NIE L. Structure and characteristic analysis of a novel toroidal motor with hybrid excitation[J]. Proceedings of the CSEE, 2015, 35(20): 5335-5343(in Chinese).
    [10] 李争, 安金峰, 肖宇, 等. 基于自适应观测器的永磁同步直线电机模型预测控制系统设计[J]. 电工技术学报, 2021, 36(6): 1190-1200.

    LI Z, AN J F, XIAO Y, et al. Design of model predictive control system for permanent magnet synchronous linear motor based on adaptive observer[J]. Transactions of China Electrotechnical Society, 2021, 36(6): 1190-1200(in Chinese).
    [11] ZHANG Y Q, YIN Z G, LI W, et al. Adaptive sliding-mode-based speed control in finite control set model predictive torque control for induction motors[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 8076-8087. doi: 10.1109/TPEL.2020.3042181
    [12] 徐艳平, 王极兵, 张保程, 等. 永磁同步电机三矢量模型预测电流控制[J]. 电工技术学报, 2018, 33(5): 980-988.

    XU Y P, WANG J B, ZHANG B C, et al. Three-vector-based model predictive current control for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 980-988(in Chinese).
    [13] SUN X D, LI T, TIAN X, et al. Fault-tolerant operation of a six-phase permanent magnet synchronous hub motor based on model predictive current control with virtual voltage vectors[J]. IEEE Transactions on Energy Conversion, 2022, 37(1): 337-346. doi: 10.1109/TEC.2021.3109869
    [14] XIE H T, WANG F X, XUN Q, et al. A low-complexity gradient descent solution with backtracking iteration approach for finite control set predictive current control[J]. IEEE Transactions on Industrial Electronics, 2022, 69(5): 4522-4533. doi: 10.1109/TIE.2021.3084164
    [15] ZHANG Y C, JIANG H, YANG H T. Model predictive control of PMSM drives based on general discrete space vector modulation[J]. IEEE Transactions on Energy Conversion, 2021, 36(2): 1300-1307. doi: 10.1109/TEC.2020.3036082
    [16] YUAN J, WEN D D, ZHANG Y. Model predictive current control strategy with reduced computation burden[J]. Mathematical Problems in Engineering, 2021, 2021: 6677543.
    [17] ZHANG X G, ZHAO Z H, CHENG Y, et al. Robust model predictive current control based on inductance and flux linkage extraction algorithm[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14893-14902. doi: 10.1109/TVT.2020.3043474
    [18] XU D Z, ZHAO W X, TANG H Y, et al. Three-vector-based model predictive current control with zero-sequence current suppression for open-winding LPMVM drives[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 225-236. doi: 10.1109/TVT.2020.3045257
    [19] KANG S W, SOH J H, KIM R Y. Symmetrical three-vector-based model predictive control with deadbeat solution for IPMSM in rotating reference frame[J]. IEEE Transactions on Industrial Electronics, 2020, 67(1): 159-168. doi: 10.1109/TIE.2018.2890490
    [20] ZHANG Q K, YI Y P, LIU P. Robust model predictive current control without dead-zone compensation[J]. IET Electric Power Applications, 2020, 14(11): 2193-2201. doi: 10.1049/iet-epa.2020.0102
    [21] ZHANG X G, YAN K, ZHANG W H. Composite vector model predictive control with time-varying control period for PMSM drives[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3): 1415-1426. doi: 10.1109/TTE.2020.3047898
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  99
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-04
  • 录用日期:  2022-11-11
  • 网络出版日期:  2023-01-06
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答