-
摘要:
为解决在内部载荷和外部发射装置约束条件下高速复杂折叠翼飞行器气动布局优化设计问题,提出基于类型函数/形状函数转换(CST)技术和直接参数结合的折叠翼飞行器参数化建模方法,开发了基于物面法矢量快速修正的黏性气动特性快速计算方法,并围绕飞行器气动性能的多目标优化设计,构建了基于克里金代理模型-遗传算法(Kriging-GA)的高速折叠翼飞行器多目标优化算法框架和优化流程,实现高速折叠翼飞行器气动布局的优化设计,获得了多目标多约束下的优化解集,可指导高速折叠翼飞行器气动布局优化设计。
-
关键词:
- 折叠翼飞行器 /
- 参数化 /
- 克里金代理模型-遗传算法 /
- 气动性能 /
- 多目标优化
Abstract:In order to solve the optimization design problem of the aerodynamic layout of complex high-speed folding-wing vehicles under the constraints of internal loads and external launch devices, a parametric modeling method for folding-wing vehicles based on the combination of class shape transformation (CST) and direct parameterization was proposed. In addition, a fast calculation method of viscous aerodynamic characteristics based on the rapid correction of the normal vector of the object plane was developed. The multi-objective optimization algorithm framework and optimization process of high-speed folding-wing vehicles based on Kriging-genetic algorithm (Kriging-GA) were constructed, so as to optimize the aerodynamic layout design of high-speed folding-wing vehicles. The optimization solution set under multiple objectives and constraints was obtained, which could guide the aerodynamic layout optimization design of high-speed folding-wing vehicles.
-
表 1 折叠翼飞行器归一化设计参数
Table 1. Normalized design parameters of folding-wing vehicle
范围 Rhead x2(截面2) z2(截面2) Ncu Ncd Hu Hd CWR l1 l2 $ {\chi _{{_{\mathrm {WL}}} }} $ $ {\chi _{{_{\mathrm{WT}}} }} $ θ $ {\chi _{_{\mathrm{RL}}}} $ $ {\chi _{{_{\mathrm{RT}}} }} $ 上限 0.7143 0.8889 0.5000 0.1000 0.1000 0.2000 0.2000 0.9767 0.3750 0.3750 0.9286 0.8333 0.7143 0.9231 0.9767 下限 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 表 2 优化后的设计变量
Table 2. Optimized design variables
约束条件 Rhead x2(截面2) z2(截面2) Ncu Ncd Hu Hd CWR l1 l2 $ {\chi _{_{\mathrm{WL}}}} $ $ {\chi _{_{\mathrm{WT}}}} $ θ $ {\chi _{_{\mathrm{RL}}}} $ $ {\chi _{_{\mathrm{RT}}}} $ 升阻比最大 0.7515 0.9827 0.7605 0.9848 1.0000 0.9949 0.8412 0.9920 0.4244 0.4437 0.9985 0.8657 0.8279 0.9464 0.8751 体积最大 0.7787 0.9460 0.7732 0.1278 0.1038 1.0000 1.0000 0.9862 0.4205 0.4525 0.9961 0.9655 0.8299 0.9622 0.8523 表 3 Pareto前端个体性能
Table 3. Performance of Pareto frontiers
典型结果 Kunfold CDfold V/m3 S2/m2 l1/mm l2/mm Q/(kW·m−2) 升阻比最大/阻力最小/体积最小 4.23 0.1833 0.40 0.1272 398 358 1315.0 升阻比最小/阻力最大/体积最大 2.19 0.5462 0.63 0.1920 400 359 1291.8 -
[1] 孙杨, 昌敏, 白俊强. 变形机翼飞行器发展综述[J]. 无人系统技术, 2021, 4(3): 65-77.SUN Y, CHANG M, BAI J Q. Review of morphing wing aircraft[J]. Unmanned Systems Technology, 2021, 4(3): 65-77(in Chinese). [2] 叶友达. 近空间高速飞行器气动特性研究与布局设计优化[J]. 力学进展, 2009, 39(6): 683-694. doi: 10.3321/j.issn:1000-0992.2009.06.009YE Y D. Study on aerodynamic characteristics and design optimization for high speed near space vehicles[J]. Advances in Mechanics, 2009, 39(6): 683-694(in Chinese). doi: 10.3321/j.issn:1000-0992.2009.06.009 [3] 马洋, 杨涛, 张青斌. 高超声速滑翔式升力体外形设计与优化[J]. 国防科技大学学报, 2014, 36(2): 34-40. doi: 10.11887/j.cn.201402007MA Y, YANG T, ZHANG Q B. Configuration optimization design of hypersonic gliding lifting body[J]. Journal of National University of Defense Technology, 2014, 36(2): 34-40(in Chinese). doi: 10.11887/j.cn.201402007 [4] 曹特. 高超声速飞行器气动外形优化[D]. 南京: 南京航空航天大学, 2015.CAO T. Aerodynamic shape optimization of hypersonic vehicles[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015(in Chinese). [5] 吕韵, 周进, 童明波. 常规布局飞机概念外形参数化建模研究[J]. 机械设计与制造工程, 2019, 48(11): 7-10. doi: 10.3969/j.issn.2095-509X.2019.11.002LYU Y, ZHOU J, TONG M B. Research on the parametric design of concept aircraft shape[J]. Machine Design and Manufacturing Engineering, 2019, 48(11): 7-10(in Chinese). doi: 10.3969/j.issn.2095-509X.2019.11.002 [6] YUAN Y. Numerical simulation of dynamic deployment of the folding wing[C]//Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017: 2371. [7] 刘玮, 陆宇平, 殷明. 折叠翼飞行器气动建模及变形稳定控制律设计[J]. 电子设计工程, 2014, 22(8): 1-4. doi: 10.3969/j.issn.1674-6236.2014.08.001LIU W, LU Y P, YIN M. Aerodynamic modeling and robust controller design for a folding wing aircraft[J]. Electronic Design Engineering, 2014, 22(8): 1-4(in Chinese). doi: 10.3969/j.issn.1674-6236.2014.08.001 [8] 唐伟, 张勇, 李为吉, 等. 二次曲线截面弹身的气动设计及优化[J]. 宇航学报, 2004, 25(4): 429-433. doi: 10.3321/j.issn:1000-1328.2004.04.015TANG W, ZHANG Y, LI W J, et al. Aerodynamic design and optimization for vehicles with conic cross section[J]. Journal of Astronautics, 2004, 25(4): 429-433(in Chinese). doi: 10.3321/j.issn:1000-1328.2004.04.015 [9] LAMOUSIN H J, WAGGENSPACK N N. NURBS-based free-form deformations[J]. IEEE Computer Graphics and Applications, 1994, 14(6): 59-65. doi: 10.1109/38.329096 [10] KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158. doi: 10.2514/1.29958 [11] 冯毅, 唐伟, 任建勋, 等. 飞行器参数化几何建模方法研究[J]. 空气动力学学报, 2012, 30(4): 546-550. doi: 10.3969/j.issn.0258-1825.2012.04.020FENG Y, TANG W, REN J X, et al. Parametric geometry representation method for hypersonic vehicle configuration[J]. Acta Aerodynamica Sinica, 2012, 30(4): 546-550(in Chinese). doi: 10.3969/j.issn.0258-1825.2012.04.020 [12] MCDONALD R A. Interactive reconstruction of 3D models in the OpenVSP parametric geometry tool[C]//Proceedings of the 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015: 1014. [13] 程锋, 唐硕, 张栋. 超声速/高超声速飞行器气动力快速估算平台设计及应用[J]. 西北工业大学学报, 2018, 36(6): 1076-1084. doi: 10.3969/j.issn.1000-2758.2018.06.007CHENG F, TANG S, ZHANG D. Design and applications of preliminary evaluation platform of aerodynamic forces for supersonic/hypersonic vehicles[J]. Journal of Northwestern Polytechnical University, 2018, 36(6): 1076-1084(in Chinese). doi: 10.3969/j.issn.1000-2758.2018.06.007 [14] LOBBIA M A. Rapid supersonic/hypersonic aerodynamics analysis model for arbitrary geometries[J]. Journal of Spacecraft and Rockets, 2017, 54(1): 315-322. doi: 10.2514/1.A33514 [15] 霍霖. 复杂外形高超声速飞行器气动热快速工程估算及热响应分析[D]. 长沙: 国防科学技术大学, 2012.HUO L. The rapid engineering aero-heating calculation and thermal respond for complex shaped hypersonic vehicles[D]. Changsha: National University of Defense Technology, 2012(in Chinese). [16] 李正洲. 考虑操稳特性的有翼再入飞行器总体多学科设计优化[D]. 南京: 南京航空航天大学, 2018.LI Z Z. Multidisciplinary design optimization for winged re-entry vehicles considering stability and control characteristics[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese). [17] 麻卫峰, 王金亮, 张建鹏, 等. 一种改进法向量估算的点云特征提取[J]. 测绘科学, 2021, 46(11): 84-90.MA W F, WANG J L, ZHANG J P, et al. Feature extraction from point cloud based on improved normal vector[J]. Science of Surveying and Mapping, 2021, 46(11): 84-90(in Chinese). [18] WARE G M, CRUZ C I. Aerodynamic characteristics of the HL-20[J]. Journal of Spacecraft and Rockets, 1993, 30(5): 529-536. doi: 10.2514/3.25562 [19] SONG W B, KEANE A J. Surrogate-based aerodynamic shape optimization of a civil aircraft engine nacelle[J]. AIAA Journal, 2007, 45(10): 2565-2574. doi: 10.2514/1.30015 [20] JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492. doi: 10.1023/A:1008306431147 [21] ANDERSON M, BURKHALTER J, JENKINS R. Multi-disciplinary intelligent systems approach to solid rocket motor design. I - Single and dual goal optimization[C]//Proceedings of the 37th Joint Propulsion Conference and Exhibit. Reston: AIAA, 2001: 3599. [22] 刘传振, 段焰辉, 蔡晋生. 使用类别形状函数的多目标气动外形优化设计[J]. 气体物理, 2016, 1(2): 37-46.LIU C Z, DUAN Y H, CAI J S. Multi-objective aerodynamic shape optimization based on class and shape transformation[J]. Physics of Gases, 2016, 1(2): 37-46(in Chinese).