留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种高超声速飞行器雷达测角误差的分析方法

杨博 刘超凡 于贺 魏翔 樊子辰

杨博,刘超凡,于贺,等. 一种高超声速飞行器雷达测角误差的分析方法[J]. 北京航空航天大学学报,2024,50(12):3666-3676 doi: 10.13700/j.bh.1001-5965.2022.0879
引用本文: 杨博,刘超凡,于贺,等. 一种高超声速飞行器雷达测角误差的分析方法[J]. 北京航空航天大学学报,2024,50(12):3666-3676 doi: 10.13700/j.bh.1001-5965.2022.0879
YANG B,LIU C F,YU H,et al. A method for analyzing angle measurement error of radar on hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3666-3676 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0879
Citation: YANG B,LIU C F,YU H,et al. A method for analyzing angle measurement error of radar on hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3666-3676 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0879

一种高超声速飞行器雷达测角误差的分析方法

doi: 10.13700/j.bh.1001-5965.2022.0879
基金项目: 中国航天智能控制实验室基金(ZDSYS-2018-03)
详细信息
    通讯作者:

    E-mail:yangbo@buaa.edu.cn

  • 中图分类号: TN953+.5

A method for analyzing angle measurement error of radar on hypersonic vehicle

Funds: Fund of Science and Technology on Space Intelligent Control Laboratory of China (ZDSYS-2018-03)
More Information
  • 摘要:

    雷达回波穿过大气、飞行器外流场、天线罩后产生的波前畸变对主动雷达单脉冲测角误差有着重要影响。基于此,分析了湍流结构引起的折射率梯度对于波前畸变影响及网格分辨率对波动方程弱形式数值求解精度,提出电磁波动方程弱形式“显式”梯度项修正及涡球模型补充密度场小尺度结构的“梯度重构”方法,通过有限元方法进行了计算机数值仿真。仿真结果表明:雷达测角误差的重要原因之一是小尺度湍流造成的电场畸变,并且随着涡结构尺度减小、波长变长,电场畸变加强,测角误差加大。

     

  • 图 1  Helmholtz方程2项比值ln d随波长和湍流内尺度变化趋势

    Figure 1.  Variation trend in ratio of two terms of Helmholtz equation ln d as a function of wavelength and turbulence inner scale

    图 2  单脉冲比幅测角原理

    Figure 2.  Principle of single pulse amplitude ratio angle measurement

    图 3  阵列天线模型示意图

    Figure 3.  Schematic of array antenna model

    图 4  高超声速飞行器密度云图

    Figure 4.  Density cloud diagram of hypersonic vehicle

    图 5  电磁波传输仿真模型

    Figure 5.  Simulation model of electromagnetic wave transmission

    图 6  工况1下折射率云图

    Figure 6.  Refractive index contour plot under No.1 condition

    图 7  16 mm波长、−3°角偏差下理想电场等值线

    Figure 7.  Ideal electric field contour under 16 mm wavelength and −3° angle deviation

    图 8  工况1下电磁波传输数值仿真结果

    Figure 8.  Numerical simulation results of electromagnetic wave transmission under No. 1 condition

    图 9  工况2条件下电磁波传输数值仿真结果

    Figure 9.  Numerical simulation results of electromagnetic wave transmission under No. 2 condition

    图 10  工况3条件下电磁波传输数值仿真结果

    Figure 10.  Numerical simulation results of electromagnetic wave transmission under No. 3 condition

    图 11  工况4条件下电磁波传输数值仿真结果

    Figure 11.  Numerical simulation results of electromagnetic wave transmission under No. 4 condition

    图 12  飞行状态2 (40 km, 6 Ma)下折射率云图

    Figure 12.  Refractive index contour plot under flight condition 2 (40 km, 6 Ma)

    图 13  24 mm波长、−3°角偏差下理想电场等值线

    Figure 13.  Ideal electric field contour under 24 mm wavelength and −3° angle deviation

    图 14  不同波长下理想S曲线

    Figure 14.  Ideal S-curves at different wavelengths

    图 15  工况5条件下电磁波传输数值仿真结果

    Figure 15.  Numerical simulation results of electromagnetic wave transmission under No. 5 condition

    图 16  工况6条件下电磁波传输数值仿真结果

    Figure 16.  Numerical simulation results of electromagnetic wave transmission under No. 6 condition

    表  1  电磁波传输仿真参数

    Table  1.   Simulation parameters of electromagnetic wave transmission

    工况 波长/mm 高度/km 马赫数 是否弱形式梯度
    显式修正
    1 16 20 3
    2 16 20 3
    3 16 40 6
    4 16 40 6
    5 24 20 3
    6 24 20 3
    下载: 导出CSV
  • [1] 王瑞奇, 逯程, 刘宇, 等. 末制导雷达目标角闪烁抑制技术研究综述[J]. 兵器装备工程学报, 2019, 40(3): 10-14.

    WANG R Q, LU C, LIU Y, et al. Overview of target angle scintillation suppression technology for terminal guidance radar[J]. Journal of Ordnance Equipment Engineering, 2019, 40(3): 10-14(in Chinese).
    [2] 马佳智, 施龙飞, 徐振海, 等. 单脉冲雷达多点源参数估计与抗干扰技术进展[J]. 雷达学报, 2019, 8(1): 125-139.

    MA J Z, SHI L F, XU Z H, et al. Overview of multi-source parameter estimation and jamming mitigation for monopulse radars[J]. Journal of Radars, 2019, 8(1): 125-139(in Chinese).
    [3] 范昌, 冯德军, 王俊杰. 散射点主动起伏引起的雷达测角误差分析[J]. 航天电子对抗, 2020, 36(4): 40-45.

    FAN C, FENG D J, WANG J J. Analysis of radar angle measurement error caused by active fluctuation of scattering point[J]. Aerospace Electronic Warfare, 2020, 36(4): 40-45(in Chinese).
    [4] 张瑜, 赤娜, 侯佳, 等. 大气折射引起的雷达定位误差模型[J]. 电光与控制, 2009, 16(7): 65-67.

    ZHANG Y, CHI N, HOU J, et al. Model of radar locating error caused by atmosphere refraction[J]. Electronics Optics & Control, 2009, 16(7): 65-67(in Chinese).
    [5] 张曼宁, 赵恒凯, 郑国莘. 毫米波段折射率结构常数的建模及敏感性分析[J]. 电子测量技术, 2016, 39(12): 150-154.

    ZHANG M N, ZHAO H K, ZHENG G S. Modeling the refractive index structure constant in millimeter-wave band and sensitivity analysis[J]. Electronic Measurement Technology, 2016, 39(12): 150-154(in Chinese).
    [6] 徐艳, 马汉清, 李鑫. 大气折射引起的中近程雷达测角测距误差分析[J]. 火控雷达技术, 2018, 47(3): 10-12.

    XU Y, MA H Q, LI X. Analysis on angle/distance measurement error of medium/short range radar caused by atmospheric refraction[J]. Fire Control Radar Technology, 2018, 47(3): 10-12(in Chinese).
    [7] 李霞, 刘建国, 董雁冰, 等. W波段毫米波晴空大气传输特性[J]. 哈尔滨工业大学学报, 2019, 51(9): 43-48.

    LI X, LIU J G, DONG Y B, et al. Transmission characteristics of W-band millimeter wave in the clear atmosphere[J]. Journal of Harbin Institute of Technology, 2019, 51(9): 43-48(in Chinese).
    [8] 赵静, 马尚昌, 代桃高, 等. Ka波段毫米波云雷达探测能力的分析研究[J]. 成都信息工程大学学报, 2016, 31(1): 29-34.

    ZHAO J, MA S C, DAI T G, et al. Analysis and research on the detection capability of Ka-band millimeter wave cloud radar[J]. Journal of Chengdu University of Information Technology, 2016, 31(1): 29-34(in Chinese).
    [9] 安复兴, 李磊, 苏伟, 等. 高超声速飞行器气动设计中的若干关键问题[J]. 中国科学 (物理学 力学 天文学), 2021, 51(10): 2-21.

    AN F X, LI L, SU W, et al. Key issues in hypersonic vehicle aerodynamic design[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2021, 51(10): 2-21(in Chinese).
    [10] 韦笑, 彭世鏐, 殷红成, 等. 基于平衡流场的再入飞行器电磁散射特性分析[J]. 系统工程与电子技术, 2011, 33(3): 506-510.

    WEI X, PENG S L, YIN H C, et al. Analysis of electromagnetic scattering characteristics of the reentry vehicle based on equilibrium flowfields[J]. Systems Engineering and Electronics, 2011, 33(3): 506-510(in Chinese).
    [11] 于哲峰, 陈旭明, 杨鹰, 等. 高超声速飞行器尾迹转捩及其对雷达散射截面的影响[J]. 兵工学报, 2019, 40(12): 2467-2472.

    YU Z F, CHEN X M, YANG Y, et al. Wake transition of the hypersonic vehicle and its influence on RCS[J]. Acta Armamentarii, 2019, 40(12): 2467-2472(in Chinese).
    [12] 张紫浩, 高鹏, 欧阳吉庭, 等. 等离子体对毫米波散射机理研究[J]. 光电技术应用, 2017, 32(6): 60-66.

    ZHANG Z H, GAO P, OUYANG J T, et al. Research on millimeter-wave scattering property of plasma[J]. Electro-Optic Technology Application, 2017, 32(6): 60-66(in Chinese).
    [13] 杨鑫, 魏兵, 尹伟科, 等. 超高速飞行器气动外形对电波传播特性的影响[J]. 西安电子科技大学学报(自然科学版), 2018, 45(3): 40-44.

    YANG X, WEI B, YIN W K, et al. Influence of the aerodynamic shape of a hypersonic vehicle on characteristics of EM wave propagation[J]. Journal of Xidian University, 2018, 45(3): 40-44(in Chinese).
    [14] 满良, 邓浩川, 吴洋, 等. 风洞模拟等离子体绕流场回波频谱调制特性实验研究[J]. 物理学报, 2022, 71(3): 215-221.

    MAN L, DENG H C, WU Y, et al. Echo spectrum modulation characteristics of plasma flow field simulated by wind tunnel[J]. Acta Physica Sinica, 2022, 71(3): 215-221(in Chinese).
    [15] SANCHEZ D J, OESCH D W. Localization of angular momentum in optical waves propagating through turbulence[J]. Optics Express, 2011, 19(25): 25388-25396. doi: 10.1364/OE.19.025388
    [16] XU L F, ZHOU Z C, REN T R. Study of a weak scattering model in aero-optic simulations and its computation[J]. Journal of the Optical Society of America A, 2017, 34(4): 594. doi: 10.1364/JOSAA.34.000594
    [17] 吴琳, 房建成, 杨照华. 本征正交分解在气动光学畸变仿真中的分析与应用[J]. 红外与毫米波学报, 2007, 26(4): 312-316. doi: 10.3321/j.issn:1001-9014.2007.04.016

    WU L, FANG J C, YANG Z H. Proper orthogonal decomposition applied in the analysis of simulating aero-optical distortions[J]. Journal of Infrared and Millimeter Waves, 2007, 26(4): 312-316(in Chinese). doi: 10.3321/j.issn:1001-9014.2007.04.016
    [18] TROLINGER J, ROSE W. Technique for simulating and evaluating aero-optical effects in optical systems[C]//Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004.
    [19] YANG B, FAN Z C, YU H. Aero-optical effects simulation technique for starlight transmission in boundary layer under high-speed conditions[J]. Chinese Journal of Aeronautics, 2020, 33(7): 1929-1941. doi: 10.1016/j.cja.2020.02.015
    [20] 丁鹭飞, 耿富录, 陈建春. 雷达原理[M]. 5版. 北京: 电子工业出版社, 2014.

    DING L F, GENG F L, CHEN J C. Radar principles[M]. 5th ed. Beijing: Publishing House of Electronics Industry, 2014(in Chinese).
    [21] 陈希信. 和-差单脉冲雷达的测角精度分析[J]. 现代雷达, 2021, 43(6): 15-18.

    CHEN X X. Angle measurement accuracy analysis of sum-difference monopulse radar[J]. Modern Radar, 2021, 43(6): 15-18(in Chinese).
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  119
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-03
  • 录用日期:  2023-02-20
  • 网络出版日期:  2023-03-14
  • 整期出版日期:  2024-12-31

目录

    /

    返回文章
    返回
    常见问答