留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于γ随机搜索策略的无人机集群海上任务分配

吴秋实 郭杰 康振亮 张宝超 王浩凝 唐胜景

吴秋实,郭杰,康振亮,等. 基于γ随机搜索策略的无人机集群海上任务分配[J]. 北京航空航天大学学报,2024,50(12):3872-3883 doi: 10.13700/j.bh.1001-5965.2022.0882
引用本文: 吴秋实,郭杰,康振亮,等. 基于γ随机搜索策略的无人机集群海上任务分配[J]. 北京航空航天大学学报,2024,50(12):3872-3883 doi: 10.13700/j.bh.1001-5965.2022.0882
WU Q S,GUO J,KANG Z L,et al. Maritime mission assignment of UAV clusters based on γ random search strategy[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3872-3883 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0882
Citation: WU Q S,GUO J,KANG Z L,et al. Maritime mission assignment of UAV clusters based on γ random search strategy[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3872-3883 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0882

基于γ随机搜索策略的无人机集群海上任务分配

doi: 10.13700/j.bh.1001-5965.2022.0882
基金项目: 上海航天科技创新基金(SAST201711)
详细信息
    通讯作者:

    E-mail:guojie1981@bit.edu.cn

  • 中图分类号: V279;TP301.6

Maritime mission assignment of UAV clusters based on γ random search strategy

Funds: Shanghai Aerospace Science and Technology Innovation Fund (SAST201711)
More Information
  • 摘要:

    针对无人机(UAV)集群海上作战态势复杂、作战任务多样、作战单元异构的特点,建立了海上无人机集群多目标任务分配优化模型,并针对该模型提出了一种基于$\gamma $随机搜索策略的改进离散粒子群算法(γ-DPSO)。将作战态势细节与复杂作战需求等引入无人机集群任务分配问题,建立契合作战场景的无人机集群任务分配作战模型;基于粒子编码矩阵,设计均衡搜索策略、$\gamma $随机搜索策略、分阶段自适应参数,提出基于$\gamma $随机搜索策略的改进离散粒子群算法,解决离散粒子群算法易陷入局部最优造成未成熟收敛的问题。仿真结果表明:针对所建立的符合海上作战特点的无人机集群多目标任务分配优化模型,所提算法可有效解决无人机集群多目标任务分配问题,所提改进策略提高了算法的收敛速度与算法精度。

     

  • 图 1  多无人机协同海上对抗任务分配问题建模

    Figure 1.  Modeling of cooperative maritime combat mission assignment problem of multiple UAVs

    图 2  海上无人机集群交战场景

    Figure 2.  Combat scenario of maritime UAV clusters

    图 3  粒子间的交叉操作

    Figure 3.  Intersection operation between particles

    图 4  粒子间的变异操作

    Figure 4.  Mutation operation between particles

    图 5  仿真初始位置设置

    Figure 5.  Initial position setting in simulation

    图 6  自适应惯性权重和加速系数变化曲线

    Figure 6.  Variation curves of adaptive inertia weight and acceleration coefficient

    图 7  总适应度值变化曲线

    Figure 7.  Variation of total adaptation value

    图 8  各无人机飞行航程代价变化曲线

    Figure 8.  Variation of flight range cost of each UAV

    图 9  仿真收敛曲线

    Figure 9.  Simulation convergence curve

    图 10  随机收敛曲线

    Figure 10.  Convergence curves of random particles

    图 11  算法对比适应度收敛曲线

    Figure 11.  Algorithm comparison adaptation convergence curves

    表  1  海上无人机协同任务分配优化模型基本参数

    Table  1.   Basic parameters of cooperative mission assignment optimization model for maritime UAVs

    基本参数 我方无人机 敌方船只
    个数 $ {N_{{V}}} $ $ {N_{{T}}} $
    攻击半径 ${R_{{{{\mathrm{a}},V}}}}$ ${R_{{{{\mathrm{a}},T}}}}$
    探测半径 ${R_{{{{\mathrm{s}},V}}}}$ ${R_{{{{\mathrm{s}},T}}}}$
    命中概率 ${p_{{{{\mathrm{h}},V}}}}$ ${p_{{{{\mathrm{h}},T}}}}$
    毁伤概率 ${p_{{{{\mathrm{d}},V}}}}$ ${p_{{{{\mathrm{d}},T}}}}$
    耐久极限 $ {e_{{V}}} $ $ {e_{{T}}} $
    携带作战载荷数量 ${\varepsilon _{{V}}}$
    下载: 导出CSV

    表  2  我方无人机携带作战载荷数量与探测半径

    Table  2.   Number of combat payload carried by Chinese UAVs and detection radius

    无人机编号 ${\varepsilon _{{V}}}$ ${R_{{{{\mathrm{s}},V}}}}$ 无人机编号 ${\varepsilon _{{V}}}$ ${R_{{{{\mathrm{s}},V}}}}$
    V1 3 7 V11 2 6
    V2 2 11 V12 1 10
    V3 3 11 V13 2 9
    V4 3 9 V14 1 11
    V5 2 6 V15 2 12
    V6 2 7 V16 1 9
    V7 1 12 V17 1 6
    V8 2 6 V18 1 10
    V9 1 7 V19 1 10
    V10 2 11 V20 1 12
    下载: 导出CSV

    表  3  敌方船只探测半径

    Table  3.   Detection radius of enemy vessel

    目标编号 $ {R_{{{{\mathrm{s}},T}}}} $ 目标编号 $ {R_{{{{\mathrm{s}},T}}}} $ 目标编号 $ {R_{{{{\mathrm{s}},T}}}} $
    T1 12 T11 12 T21 8
    T2 10 T12 8 T22 8
    T3 7 T13 9 T23 8
    T4 9 T14 10 T24 10
    T5 8 T15 12 T25 8
    T6 9 T16 12 T26 12
    T7 7 T17 6 T27 11
    T8 10 T18 11 T28 12
    T9 7 T19 9 T29 10
    T10 11 T20 11 T30 8
    下载: 导出CSV

    表  4  模型参数设置

    Table  4.   Model parameters setting

    参数 数值 参数 数值
    $ {N_{{V}}} $ 20 ${N_{{T}}}$ 30
    $ {w_1} $ 0.5 $ {w_2} $ 0.5
    $ {w_3} $ 0.25 $q$ 20
    $\Delta {t_{1,\min }}$ 10 $\Delta {t_{1,\max }}$ 20
    $\Delta {t_{6,\min }}$ 10 $\Delta {t_{6,\max }}$ 20
    下载: 导出CSV

    表  5  算法参数设置

    Table  5.   Algorithm parameters setting

    参数 数值 参数 数值
    $N$ 1000 $ {K_{\rm{G}}} $ 200
    $ {\omega _0} $ 0.9 $ {\omega _{\mathrm{e}}} $ 0.4
    $ {c_{1,0}} $ 0.35 $ {c_{1,{\mathrm{e}}}} $ 0.95
    $ {c_{2,0}} $ 0.35 $ {c_{2,{\mathrm{e}}}} $ 0.95
    下载: 导出CSV

    表  6  分配结果与顺序

    Table  6.   Assignment results and order

    无人机编号 分配结果与顺序 无人机编号 分配结果与顺序
    V1 T25,cT19,cT14,cT6,cT30,a V11 T15,aT26,a
    V2 T20,aT25,a V12 T17,cT12,a
    V3 T30,cT15,cT4,cT24,cT22,cT27,cT1,a
    T23,aT9,cT11,a
    V13 T2,cT13,aT16,cT23,cT5,cT7,c
    T3,cT18,cT14,a
    V4 T1,cT29,cT27,aT28,aT10,a V14 T13,cT4,a
    V5 T6,a V15 T10,cT8,cT18,a
    V6 T17,aT5,a V16 T28,cT16,a
    V7 T22,aT20,c V17 T24,a
    V8 T11,cT2,aT29,aT12,c V18 T26,cT8,a
    V9 T19,a V19 T21,a
    V10 T21,cT3,aT7,a V20 T9,a
    下载: 导出CSV

    表  7  迭代至200代时添加与未添加随机粒子的收敛精度

    Table  7.   Convergence accuracy with and without random particles in iteration to 200 generations

    是否添加随机粒子迭代至200代时的适应度值
    添加随机粒子1.667
    未添加随机粒子1.810
    下载: 导出CSV

    表  8  迭代至200代时不同算法的收敛精度

    Table  8.   Convergence accuracy of different algorithms in iteration to 200 generations

    算法迭代至200代时的适应度值
    $\gamma $-DPSO1.667
    DPSO4.425
    改进DPSO [22]2.090
    CPSO[26]1.989
    下载: 导出CSV
  • [1] 谢伟, 陶浩, 龚俊斌, 等. 海上无人系统集群发展现状及关键技术研究进展[J]. 中国舰船研究, 2021, 16(1): 7-17.

    XIE W, TAO H, GONG J B, et al. Research advances in the development status and key technology of unmanned marine vehicle swarm operation[J]. Chinese Journal of Ship Research, 2021, 16(1): 7-17(in Chinese).
    [2] 刘丽, 武坦然, 邵东青. 美军空中无人作战概念解析[J]. 航天电子对抗, 2022, 38(1): 26-30. doi: 10.3969/j.issn.1673-2421.2022.01.006

    LIU L, WU T R, SHAO D Q. Analysis of the combat concept of unmanned aerial system of the US armed forces[J]. Aerospace Electronic Warfare, 2022, 38(1): 26-30(in Chinese). doi: 10.3969/j.issn.1673-2421.2022.01.006
    [3] 王宇, 郭兴旺. 无人系统集群海上作战应用研究[J]. 舰船电子工程, 2019, 39(12): 21-25.

    WANG Y, GUO X W. Research on the application of unmanned system cluster in marine combat applications[J]. Ship Electronic Engineering, 2019, 39(12): 21-25(in Chinese).
    [4] 吴子沉, 胡斌. 基于态势认知的无人机集群围捕方法[J]. 北京航空航天大学学报, 2021, 47(2): 424-430.

    WU Z C, HU B. Swarm rounding up method of UAV based on situation cognition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 424-430(in Chinese).
    [5] 李桂亮, 毕海洋, 洪雪健, 等. 基于DE-DPSO-GT-SA算法的协同多任务分配[J]. 北京航空航天大学学报, 2021, 47(1): 90-96.

    LI G L, BI H Y, HONG X J, et al. Cooperative multi-task assignment based on DE-DPSO-GT-SA algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 90-96(in Chinese).
    [6] 梁天骄, 陈晓明, 杨朝旭, 等. 舰载无人机滑行轨迹控制方法[J]. 北京航空航天大学学报, 2021, 47(2): 289-296.

    LIANG T J, CHEN X M, YANG Z X, et al. Trajectory control method for unmanned carrier aircraft taxiing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 289-296(in Chinese).
    [7] 张令, 段海滨, 雍婷, 等. 基于寒鸦配对交互行为的无人机集群编队控制[J]. 北京航空航天大学学报, 2021, 47(2): 391-397.

    ZHANG L, DUAN H B, YONG T, et al. Unmanned aerial vehicle swarm formation control based on paired interaction mechanism in jackdaws[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 391-397(in Chinese).
    [8] 符小卫, 陈子浩. 多无人机协同探测快速目标的控制方法设计[J]. 系统工程与电子技术, 2021, 43(11): 3295-3304. doi: 10.12305/j.issn.1001-506X.2021.11.30

    FU X W, CHEN Z H. Design of control method for multi-UAV cooperative detection of fast target[J]. Systems Engineering and Electronics, 2021, 43(11): 3295-3304(in Chinese). doi: 10.12305/j.issn.1001-506X.2021.11.30
    [9] 郭继峰, 郑红星, 贾涛, 等. 异构无人系统协同作战关键技术综述[J]. 宇航学报, 2020, 41(6): 686-696. doi: 10.3873/j.issn.1000-1328.2020.06.006

    GUO J F, ZHENG H X, JIA T, et al. Summary of key technologies for heterogeneous unmanned system cooperative operations[J]. Journal of Astronautics, 2020, 41(6): 686-696(in Chinese). doi: 10.3873/j.issn.1000-1328.2020.06.006
    [10] GAO S, WU J Z, AI J L. Multi-UAV reconnaissance task allocation for heterogeneous targets using grouping ant colony optimization algorithm[J]. Soft Computing, 2021, 25(10): 7155-7167. doi: 10.1007/s00500-021-05675-8
    [11] KIM J, OH H, YU B, et al. Optimal task assignment for UAV swarm operations in hostile environments[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(2): 456-467. doi: 10.1007/s42405-020-00317-z
    [12] HUO L, ZHU J, WU G, et al. A novel simulated annealing based strategy for balanced UAV task assignment and path planning[J]. Sensors, 2020, 20(17): 4769. doi: 10.3390/s20174769
    [13] 王然然, 魏文领, 杨铭超, 等. 考虑协同航路规划的多无人机任务分配[J]. 航空学报, 2020, 41(S2): 24-35. doi: 10.7527/S1000-6893.2020.24234

    WANG R R, WEI W L, YANG M C, et al. Task allocation of multiple UAVs considering cooperative route planning[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 24-35(in Chinese). doi: 10.7527/S1000-6893.2020.24234
    [14] XU G T, LIU L, TENG L, et al. Cooperative multiple task assignment considering precedence constraints using multi-chromosome encoded genetic algorithm[C]//Proceedings of the 2018 AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2018: 1859.
    [15] 马也, 范文慧, 常天庆. 基于智能算法的无人集群防御作战方案优化方法[J]. 兵工学报, 2022, 43(6): 1415-1425.

    MA Y, FAN W H, CHANG T Q. Optimization method of unmanned swarm defensive combat scheme based on intelligent algorithm[J]. Acta Armamentarii, 2022, 43(6): 1415-1425(in Chinese).
    [16] CHEN Y B, YANG D, YU J Q. Multi-UAV task assignment with parameter and time-sensitive uncertainties using modified two-part wolf pack search algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 2853-2872. doi: 10.1109/TAES.2018.2831138
    [17] WANG Y, YANG R R, XU Y X, et al. Research on multi-agent task optimization and scheduling based on improved ant colony algorithm[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1043(3): 032007. doi: 10.1088/1757-899X/1043/3/032007
    [18] SHI J Q, TAN L, LIAN X F, et al. A multi-unmanned aerial vehicle dynamic task assignment method based on bionic algorithms[J]. Computers and Electrical Engineering, 2022, 99(1): 107820.
    [19] ZHU Z X, TANG B W, YUAN J P. Multirobot task allocation based on an improved particle swarm optimization approach[J]. International Journal of Advanced Robotic Systems, 2017, 14(3): 1-22.
    [20] LI M C, LIU C B, LI K L, et al. Multi-task allocation with an optimized quantum particle swarm method[J]. Applied Soft Computing, 2020, 96(1): 106603.
    [21] YAN M, YUAN H M, XU J, et al. Task allocation and route planning of multiple UAVs in a marine environment based on an improved particle swarm optimization algorithm[J]. EURASIP Journal on Advances in Signal Processing, 2021, 2021: 94. doi: 10.1186/s13634-021-00804-9
    [22] 梁国强, 康宇航, 邢志川, 等. 基于离散粒子群优化的无人机协同多任务分配[J]. 计算机仿真, 2018, 35(2): 22-28. doi: 10.3969/j.issn.1006-9348.2018.02.005

    LIANG G Q, KANG Y H, XING Z C, et al. UAV cooperative multi-task assignment based on discrete particle swarm optimization algorithm[J]. Computer Simulation, 2018, 35(2): 22-28(in Chinese). doi: 10.3969/j.issn.1006-9348.2018.02.005
    [23] ZHANG J D, CHEN Y Y, TANG Y Q, et al. Cooperative task assignment for UAV based on SA-QCDPSO[C]//Proceedings of the 2020 IEEE 16th International Conference on Control &Automation. Piscataway: IEEE Press, 2020: 864-869.
    [24] 何润林. 吸气式高超声速飞行器上升段轨迹优化与制导研究[D]. 北京: 清华大学, 2018: 24-27.

    HE R L. Research on trajectory optimization and guidance of air-breathing hypersonic vehicle in ascending phase[D]. Beijing: Tsinghua University, 2018: 24-27(in Chinese).
    [25] XUE H. A quasi-reflection based SC-PSO for ship path planning with grounding avoidance[J]. Ocean Engineering, 2022, 247(1): 110772.
    [26] 仝秋娟, 李萌, 赵岂. 基于分类思想的改进粒子群优化算法[J]. 现代电子技术, 2019, 42(19): 11-14.

    TONG Q J, LI M, ZHAO Q. An improved particle swarm optimization algorithm based on classification[J]. Modern Electronics Technique, 2019, 42(19): 11-14(in Chinese).
  • 加载中
图(11) / 表(8)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  117
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-03
  • 录用日期:  2022-12-23
  • 网络出版日期:  2023-01-10
  • 整期出版日期:  2024-12-31

目录

    /

    返回文章
    返回
    常见问答