Method for function determination of GEO spin stabilized objects by ground-based photometric data
-
摘要:
地球静止轨道(GEO)自旋稳定目标的自旋周期和其地基光度数据周期及其自身的功能属性均具有较强关联性,以目标自旋周期为桥梁,可以基于地基光度数据实现GEO自旋稳定目标的功能判定。对截至2022年5月1日全球仍在轨运行的GEO自旋稳定目标进行目标自旋周期和功能关联分析,在综合考虑目标光度数据不同特点的基础上提出光度数据反演目标自旋周期的方法。结合目标自旋周期和其功能的关联性,进一步提出光度数据判定目标功能的方法,该方法可以有效提高地基光度数据的应用效益,有望为太空目标能力评估等空间应用提供新思路。
Abstract:The spin period of geosynchronous earth orbit (GEO) spin stabilized objects has a strong correlation with its ground-based photometric data period and functional attributes. With the spin period of the object as a bridge, the function determination of a GEO spin stabilized object can be realized by ground-based photometric data. The spin period and function correlation of the GEO spin stabilized objects that are still in orbit as of May 1, 2022 were analyzed. Based on different characteristics of their photometric data, the photometric data inversion method of the object’s spin period was proposed. By combining the correlation between spin period and its function, the function determination of the object by photometric data was further proposed, which could effectively improve the application benefit of ground-based photometric data and provide new ideas for space applications such as space object capability evaluation.
-
表 1 在轨运行GEO自旋稳定目标
Table 1. GEO spin stabilized objects in orbit
目标编号 目标名称 功能 转速/(r·min−1) 2000-024A DSP 20 预警 6 2001-033A DSP 21 预警 6 2004-004A DSP 22 预警 6 2000-081A Astra 2D 通信 50 2002-015B Astra 3A 通信 50 2000-046A Brazilsat B4 通信 50 2003-043A Eutelsat 33A 通信 50 2002-040B Meteosat 8 气象 100 2005-049B Meteosat 9 气象 100 2012-035B Meteosat 10 气象 100 2015-034B Meteosat 11 气象 100 2012-002A Fengyun 2F 气象 100 2014-090A Fengyun 2G 气象 100 2018-050A Fengyun 2H 气象 100 -
[1] LINARES R. Probabilistic identification and discrimination of deep space objects via astrometric and photometric data fusion[D]. Buffalo: State University of New York at Buffalo, 2013: 2-3. [2] 王阳, 杜小平, 范椿林. 地基光度曲线反演空间目标特征技术研究进展[J]. 科学通报, 2017, 62(15): 1578-1590. doi: 10.1360/N972016-01082WANG Y, DU X P, FAN C L. Progress of light curve inversion technology for resident space object characteristics[J]. Chinese Science Bulletin, 2017, 62(15): 1578-1590(in Chinese). doi: 10.1360/N972016-01082 [3] PAYNE T, GREGORY S, LUU K. SSA analysis of GEOS photometric signature classifications and solar panel offsets[C]//Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference. Kihei: The Maui Economic Development Board, 2006. [4] LINARES R, CRASSIDIS J L, JAH M K. Space object classification and characterization via multiple model adaptive estimation[C]// Proceedings of the 17th International Conference on Information Fusion. Piscataway: IEEE Press, 2014: 1-7. [5] HINKS J C, CRASSIDIS J L. Angular velocity bounds via light curve glint duration[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2016. [6] VRBA F, HUTTER D, SHANKLAND P, et al. A survey of geosynchronous satellite glints[C]//Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference. Kihei: The Maui Economic Development Board, 2009. [7] LINARES R, JAH M K, CRASSIDIS J L, et al. Astrometric and photometric data fusion for inactive space object mass and area estimation[J]. Acta Astronautica, 2014, 99: 1-15. doi: 10.1016/j.actaastro.2013.10.018 [8] LINARES R, CRASSIDIS J. Space object shape inversion via adaptive hamiltonian markov chain Monte Carlo[J]. Journal of Guidance, Control, and Dynamics: A Publication of the American Institute of Aeronautics and Astronautics Devoted to the Technology of Dynamics and Control, 2020(11): 43-47. [9] UR REHMAN M J, DASS S C, ASIRVADAM V S. Markov chain Monte Carlo (MCMC) method for parameter estimation of nonlinear dynamical systems[C]//Proceedings of the IEEE International Conference on Signal and Image Processing Applications. Piscataway: IEEE Press, 2015: 7-10. [10] DIANETTI A D, CRASSIDIS J L. Space object attitude determination from multispectral light curves[C]//Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020. [11] PENG H, BAI X. Limits of Machine learning approach on improving orbit prediction accuracy using support vector machine[C]//Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference. Kihei: The Maui Economic Development Board, 2017. [12] PENG H, BAI X L. Recovering area-to-mass ratio of resident space objects through data mining[J]. Acta Astronautica, 2018, 142: 75-86. doi: 10.1016/j.actaastro.2017.09.030 [13] NAUL B, BLOOM J S, PÉREZ F, et al. A recurrent neural network for classification of unevenly sampled variable stars[J]. Nature Astronomy, 2018, 2: 151-155. [14] HARRISON K, ERIC C, ADAM B. Characterization of LEO satellites with all-sky photometric signatures[C]//Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference. Kihei: The Maui Economic Development Board, 2022. [15] 杜俊举. 空间碎片光度数据的获取与分析[D]. 济南: 山东大学, 2022: 90-93.DU J J. Acquisition and analysis of photometric data of space debris[D]. Jinan: Shandong University, 2022: 90-93(in Chinese). [16] 马若. 基于地基光度信号的空间目标关键特征反演方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 22-33.MA R. Research on key feature inversion method of space target based on ground photometric signal[D]. Harbin: Harbin Institute of Technology, 2020: 22-33(in Chinese). [17] 苏金宇. 基于时谱分析的空间目标姿态反演方法及实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 24-32.SU J Y. Space target attitude inversion method and experimental study based on time spectrum analysis[D]. Harbin: Harbin Institute of Technology, 2020: 24-32(in Chinese) . [18] HALL D, KERVIN P. Optical characterization of deep-space object rotation states[C]//Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference. Kihei: The Maui Economic Development Board, 2014. [19] SCHAFER E. Stereoscopic light curve analysis of space debris objects[D]. Stuttgart: DLR Institute for Technical Physics, 2017. [20] 刘通, 陈浩, 沈鸣, 等. 旋转卫星激光测距数据分析与处理[J]. 中国激光, 2017, 44(5): 0504001. doi: 10.3788/CJL201744.0504001LIU T, CHEN H, SHEN M, et al. Spinning satellite laser ranging data analysis and processing[J]. Chinese Journal of Lasers, 2017, 44(5): 0504001(in Chinese). doi: 10.3788/CJL201744.0504001 -


下载: