-
摘要:
数值计算是进行岩土工程问题分析的重要工具,将统一硬化(UH)模型准确、高效地应用于岩土工程数值计算具有重要价值。基于此,研究分析了UH模型在理论继承性、加卸载判断、等效思想应用等方面的优越性,开发了UH模型图形用户界面(GUI)组件和用户自定义材料(UMAT)子程序,进而将UH模型有效嵌入有限元软件,并通过应用切线刚度矩阵的对称化方法及低压应力变换改进公式改进了数值计算的收敛性。将UH模型应用于地基荷载板试验模拟,发现UH模型计算所得荷载-沉降曲线与试验数据较为接近,体现了UH模型在地基变形计算中的可靠性。研究结果实现了UH模型数值计算功能的有效开发及计算方法的改进优化,对解决复杂岩土工程问题具有重要价值。
Abstract:Numerical calculation is an important tool for analyzing geotechnical engineering problems, and the accurate and efficient application of the unified hardening (UH) model in numerical calculation of geotechnical engineering is of great value. The superiority of the UH model in theoretical inheritance, loading and unloading judgment, and equivalent concept application was studied. The graphical user interface (GUI) components and user material (UMAT) subroutine for the UH model were developed, and the UH model was effectively embedded in the finite element software. The convergence of numerical calculation was improved through the application of the symmetry method of tangent stiffness matrix and the improved formula of low-pressure stress transformation. The UH model was applied to simulate the foundation load plate test, and the calculated load-settlement curve was found to be close to the test data, which demonstrated the reliability of the UH model in foundation deformation calculation. The research results have effectively developed the numerical calculation capabilities of the UH model and improved the optimization of the calculation methods, which holds important value for solving complex geotechnical engineering problems.
-
表 1 地基土模型参数取值
Table 1. Parameter values of foundation soil model
M γ κ λ N Z χ m 1.25 0.3 0.04 0.135 1.66 0.9 0 1.8 表 2 s/D=0.25时的最大荷载比较
Table 2. Maximum load comparison at s/D=0.25
方法 最大荷载/kPa 差值/kPa D=0.56 m D=0.8 m 试验值 391 482 91 UH模型计算值 433 504 71 -
[1] 姚仰平, 罗汀, 侯伟. 土的本构关系[M]. 2版. 北京: 人民交通出版社, 2018.YAO Y P, LUO T, HOU W. Soil constitutive models[M]. 2nd ed. Beijing: China Communications Press, 2018(in Chinese). [2] YAO Y P, WANG N D. Transformed stress method for generalizing soil constitutive models[J]. Journal of Engineering Mechanics, 2014, 140(3): 614-629. doi: 10.1061/(ASCE)EM.1943-7889.0000685 [3] YAO Y P, HOU W, ZHOU A N. UH model: Three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. [4] YAO Y P, SUN D A. Application of Lade’s criterion to Cam-clay model[J]. Journal of Engineering Mechanics, 2000, 126(1): 112-119. doi: 10.1061/(ASCE)0733-9399(2000)126:1(112) [5] 陈云敏, 马鹏程, 唐耀. 土体的本构模型和超重力物理模拟[J]. 力学学报, 2020, 52(4): 901-915. doi: 10.6052/0459-1879-20-059CHEN Y M, MA P C, TANG Y. Constitutive models and hypergravity physical simulation of soils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 901-915(in Chinese) . doi: 10.6052/0459-1879-20-059 [6] YAO Y P, KONG L M, HU J. An elastic-viscous-plastic model for overconsolidated clays[J]. Science China: Technological Sciences, 2013, 56(2): 441-457. doi: 10.1007/s11431-012-5108-y [7] YAO Y P, KONG L M, ZHOU A N, et al. Time-dependent unified hardening model: Three-dimensional elastoviscoplastic constitutive model for clays[J]. Journal of Engineering Mechanics, 2015, 141(6): 04014162. doi: 10.1061/(ASCE)EM.1943-7889.0000885 [8] YAO Y P, LIU L, LUO T. A constitutive model for granular soils[J]. Science China: Technological Sciences, 2018, 61(10): 1546-1555. doi: 10.1007/s11431-017-9205-8 [9] LUO T, CHEN D, YAO Y P, et al. An advanced UH model for unsaturated soils[J]. Acta Geotechnica, 2020, 15(1): 145-164. doi: 10.1007/s11440-019-00882-y [10] YAO Y P, TIAN Y, GAO Z W. Anisotropic UH model for soils based on a simple transformed stress method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(1): 54-78. doi: 10.1002/nag.2545 [11] 姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193-217. doi: 10.11779/CJGE201502001YAO Y P. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193-217(in Chinese). doi: 10.11779/CJGE201502001 [12] 贾利勇, 富琛阳子, 贺高, 等. Abaqus GUI程序开发指南: Python语言[M]. 北京: 人民邮电出版社, 2016.JIA L Y, FUCHEN Y Z, HE G, et al. Abaqus GUI program development guide: Python language[M]. Beijing: Posts & Telecom Press, 2016(in Chinese). [13] 杨曼娟. ABAQUS 用户材料子程序开发及应用[D]. 武汉: 华中科技大学, 2005.YANG M J. Development and application of ABAQUS user material subroutine[D]. Wuhan: Huazhong University of Science and Technology, 2005(in Chinese). [14] 罗汀, 秦振华, 姚仰平, 等. UH模型切线刚度矩阵对称化及其应用[J]. 力学学报, 2011, 43(6): 1186-1190. doi: 10.6052/0459-1879-2011-6-lxxb2010-538LUO T, QIN Z H, YAO Y P, et al. Symmetrization and applications of tangent stiffness matrix for UH model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1186-1190(in Chinese). doi: 10.6052/0459-1879-2011-6-lxxb2010-538 [15] 姚仰平, 唐科松. 土的各向同性化变换应力方法[J]. 力学学报, 2022, 54(6): 1651-1659. doi: 10.6052/0459-1879-21-651YAO Y P, TANG K S. Isotropically transformed stress method for the anisotropy of soils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1651-1659(in Chinese). doi: 10.6052/0459-1879-21-651 [16] 柳飞, 杨俊杰, 刘红军, 等. 离心模型试验模拟平板载荷试验研究[J]. 岩土工程学报, 2007, 29(6): 880-886. doi: 10.3321/j.issn:1000-4548.2007.06.016LIU F, YANG J J, LIU H J, et al. Study on plate loading test by centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 880-886(in Chinese). doi: 10.3321/j.issn:1000-4548.2007.06.016 [17] 柳飞. 砂土地基承载力离心模型试验研究[D]. 青岛: 中国海洋大学, 2007.LIU F. Centrifugal model test study on bearing capacity of sand foundation[D]. Qingdao: Ocean University of China, 2007 (in Chinese). -