留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预弯曲螺旋缠绕的气动软体夹持器的研究

谭暾旭 滕燕 王春渊

谭暾旭,滕燕,王春渊. 预弯曲螺旋缠绕的气动软体夹持器的研究[J]. 北京航空航天大学学报,2025,51(2):616-624 doi: 10.13700/j.bh.1001-5965.2023.0010
引用本文: 谭暾旭,滕燕,王春渊. 预弯曲螺旋缠绕的气动软体夹持器的研究[J]. 北京航空航天大学学报,2025,51(2):616-624 doi: 10.13700/j.bh.1001-5965.2023.0010
TAN T X,TENG Y,WANG C Y. Research on pre-curved spiral wound pneumatic soft gripper[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):616-624 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0010
Citation: TAN T X,TENG Y,WANG C Y. Research on pre-curved spiral wound pneumatic soft gripper[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):616-624 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0010

预弯曲螺旋缠绕的气动软体夹持器的研究

doi: 10.13700/j.bh.1001-5965.2023.0010
详细信息
    通讯作者:

    E-mail:yantengwf@126.com

  • 中图分类号: TH138;TP241

Research on pre-curved spiral wound pneumatic soft gripper

More Information
  • 摘要:

    利用弹性不稳定性来提高仿生软体机器人的性能正日益得到人们的关注。设计了一种具有单稳态结构的预弯曲螺旋缠绕气动软体夹持器,包括应变限制层和快速气动网格通道层两部分。将应变限制层做轴向预拉伸,快速气动网格通道层沿着轴向预拉伸方向偏转一定角度与应变限制层相黏合,释放预拉伸后即得到有预弯曲角的螺旋状夹持器,在驱动下可表现出单稳态行为。通过理论和仿真分析,研究了该型夹持器无压驱动下的预弯曲机理和有压驱动下的弯曲力学行为,分析发现拉伸率和偏转角是影响夹持器性能的关键参数。最后,进行了该型软体夹持器的静力学试验和抓取测试,结果表明:该型夹持器具有良好的目标适应性和抓取能力。由于所具有的单稳态结构,在零气压初始状态下可加持自身质量1.35倍的物体;在有气压驱动状态下最大可夹持自身质量20.85倍的物体。

     

  • 图 1  藤蔓植物缠绕示意图

    Figure 1.  Diagram of Vine plant winding

    图 2  软体夹持器工作原理图

    Figure 2.  Working principle of soft gripper

    图 3  软体夹持器的结构剖面尺寸图

    Figure 3.  Structural cross-section dimension of soft gripper

    图 4  软体夹持器单稳态结构能量分布

    Figure 4.  Energy distribution of monostable structure of soft gripper

    图 5  夹持器的运动被解耦为弯曲运动和扭转运动

    Figure 5.  Decoupling of gripper motion into bending motion and deflection motion

    图 6  单轴拉伸试验样件

    Figure 6.  Sample for uniaxial stretching test

    图 7  偏转角为零时预弯曲角随拉伸率变化的试验仿真对比和曲线

    Figure 7.  Comparison and curve of pre-curved angle changing with stretching ratio when deflection angle is zero between test and simulation

    图 8  预弯曲角与预扭转角试验与仿真结果

    Figure 8.  Test and simulation results of pre-curved angle and pre-deflected angle

    图 9  夹持器驱动下弯曲角和扭转角仿真结果

    Figure 9.  Simulation results of curved angle and deflected angle under gripper actuation

    图 10  80 kPa压力驱动下夹持器仿真与试验变形对比图

    Figure 10.  Comparison of gripper deformation between simulation and test under pressure actuation of 80 kPa

    图 11  ${\varepsilon _{{\text{pre}}}} = 30\% $和$\beta = {20^ \circ }$的夹持器试验与仿真的弯曲角与扭转角

    Figure 11.  Curved angle and deflected angle of gripper in test and simulation for ${\varepsilon _{{\text{pre}}}} = 30\% $ and β=20°

    图 12  预拉伸层弯曲示意图

    Figure 12.  Bending of pre-stretching layer

    图 13  预拉伸应力与残余应力在AB方向上的分析结果

    Figure 13.  Analysis results of pre-stretching stress and residual stress in AB direction

    图 14  AB方向上的应力随输入气压的变化曲线

    Figure 14.  Stress variation in AB direction with input air pressure

    图 15  末端输出力测试试验平台

    Figure 15.  End output force test platform

    图 16  2种情况下的驱动器末端输出力

    Figure 16.  End output force of actuator in two cases

    图 17  抓取能力试验系统原理图

    1-气源;2-开关阀;3-分离器;4,6,7-减压阀;5-干燥器;8-手动换向阀;9,10-节流阀;11-数显表;12-气缸;13-拉压力传感器;14-软体夹持器;15-圆柱体;16-变送器;17-采集仪。

    Figure 17.  Principle of grasping ability test system

    图 18  抓取能力测试试验系统平台

    Figure 18.  System platform of grasping ability test

    图 19  软体夹持器抓取力测试曲线

    Figure 19.  Test curve of grasping force of soft gripper

    图 20  零输入气压抓取柱状物体试验结果

    Figure 20.  Test results of grasping cylindrical objects with zero input air pressure

    图 21  驱动气压为100 kPa时抓取不同形状物体结果

    Figure 21.  Results of grasping objects with different shapes with an air pressure actuation of 100 kPa

  • [1] 赵京, 张自强, 郑强, 等. 机器人安全性研究现状及发展趋势[J]. 北京航空航天大学学报, 2018, 44(7): 1347-1358.

    ZHAO J, ZHANG Z Q, ZHENG Q, et al. Research status and development trend of robot safety[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1347-1358 (in Chinese).
    [2] KIM S, LASCHI C, TRIMMER B. Soft robotics: a bioinspired evolution in robotics[J]. Trends in Biotechnology, 2013, 31(5): 287-294. doi: 10.1016/j.tibtech.2013.03.002
    [3] RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521: 467-475. doi: 10.1038/nature14543
    [4] 管清华, 孙健, 刘彦菊, 等. 气动软体机器人发展现状与趋势[J]. 中国科学(技术科学), 2020, 50(7): 897-934. doi: 10.1360/SST-2020-0143

    GUAN Q H, SUN J, LIU Y J, et al. Status of and trends in soft pneumatic robotics[J]. Scientia Sinica (Technologica), 2020, 50(7): 897-934 (in Chinese). doi: 10.1360/SST-2020-0143
    [5] 鲍官军, 张亚琪, 许宗贵, 等. 软体机器人气压驱动结构研究综述[J]. 高技术通讯, 2019, 29(5): 467-479. doi: 10.3772/j.issn.1002-0470.2019.05.008

    BAO G J, ZHANG Y Q, XU Z G, et al. Reveiw on pneumatic-driven structure for soft robot[J]. High Technology Letters, 2019, 29(5): 467-479(in Chinese). doi: 10.3772/j.issn.1002-0470.2019.05.008
    [6] 曹毅, 顾苏程, 翟明浩, 等. 封闭式仿生螺旋缠绕软体夹持器的设计与研究[J]. 北京航空航天大学学报, 2021, 47(1): 15-23.

    CAO Y, GU S C, ZHAI M H, et al. Design and research of closed bionic spiral wound soft gripper[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 15-23 (in Chinese).
    [7] DILIBAL S, SAHIN H, DANQUAH J O, et al. Additively manufactured custom soft gripper with embedded soft force sensors for an industrial robot[J]. International Journal of Precision Engineering and Manufacturing, 2021, 22(4): 709-718. doi: 10.1007/s12541-021-00479-0
    [8] PAL A, RESTREPO V, GOSWAMI D, et al. Exploiting mechanical instabilities in soft robotics: control, sensing, and actuation[J]. Advanced Materials, 2021, 33(19): 2006939. doi: 10.1002/adma.202006939
    [9] LIU Y H, LUO K, WANG S, et al. A soft and bistable gripper with adjustable energy barrier for fast capture in space[J]. Soft Robotics, 2023, 10(1): 77-87. doi: 10.1089/soro.2021.0147
    [10] CHI Y D, TANG Y C, LIU H J, et al. Leveraging monostable and bistable pre-curved bilayer actuators for high-performance multitask soft robots[J]. Advanced Materials Technologies, 2020, 5(9): 2000370. doi: 10.1002/admt.202000370
    [11] ZHANG Z, NI X Q, WU H L, et al. Pneumatically actuated soft gripper with bistable structures[J]. Soft Robotics, 2022, 9(1): 57-71. doi: 10.1089/soro.2019.0195
    [12] ZHANG Z, NI X Q, GAO W L, et al. Pneumatically controlled reconfigurable bistable bionic flower for robotic gripper[J]. Soft Robotics, 2022, 9(4): 657-668. doi: 10.1089/soro.2020.0200
    [13] PAL A, GOSWAMI D, MARTINEZ R V. Elastic energy storage enables rapid and programmable actuation in soft machines[J]. Advanced Functional Materials, 2020, 30(1): 1906603. doi: 10.1002/adfm.201906603
    [14] WANG T Y, GE L S, GU G Y. Programmable design of soft pneu-net actuators with oblique chambers can generate coupled bending and twisting motions[J]. Sensors and Actuators A: Physical, 2018, 271: 131-138. doi: 10.1016/j.sna.2018.01.018
    [15] XAVIER M S, FLEMING A J, YONG Y K. Finite element modeling of soft fluidic actuators: overview and recent developments[J]. Advanced Intelligent Systems, 2021, 3(2): 2000187. doi: 10.1002/aisy.202000187
    [16] MARECHAL L, BALLAND P, LINDENROTH L, et al. Toward a common framework and database of materials for soft robotics[J]. Soft Robotics, 2021, 8(3): 284-297. doi: 10.1089/soro.2019.0115
    [17] 黄建龙, 解广娟, 刘正伟. 基于Mooney-Rivlin模型和Yeoh模型的超弹性橡胶材料有限元分析[J]. 橡胶工业, 2008, 55(8): 467-471. doi: 10.3969/j.issn.1000-890X.2008.08.004

    HUANG J L, XIE G J, LIU Z W. FEA of hyperelastic rubber material based on Mooney-Rivlin model and Yeoh model[J]. China Rubber Industry, 2008, 55(8): 467-471 (in Chinese). doi: 10.3969/j.issn.1000-890X.2008.08.004
  • 加载中
图(21)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  16
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-04
  • 录用日期:  2023-02-17
  • 网络出版日期:  2023-03-08
  • 整期出版日期:  2025-02-28

目录

    /

    返回文章
    返回
    常见问答