-
摘要:
以数量庞大的低轨非导航卫星播发的信号作为导航源可不依赖全球导航卫星系统(GNSS)提供定位、导航、授时(PNT)服务能力。对于全球星低轨通信星座播发的机会信号,针对其信噪比低且使用多种扩频码进行复合正交扩频调制的特点导致难以提取多普勒的问题,开展基于全球星机会信号的多普勒定位技术研究。通过实测数据对全球星导频信号进行分析,针对性地提出利用平方交谐项实现全球星的导频扩频信号的解码方法,并利用解码结果通过并行码相位搜索捕获算法提取多普勒观测量,建立粗时多普勒定位数学模型并实现定位。实测验证结果表明:利用2颗全球星的实际信号能够达到精度优于100 m的水平定位性能。
Abstract:Using signals broadcast by a large number of non-navigation low Earth orbit satellites as navigation sources can provide positioning, navigation, and timing (PNT) services independently of global navigation satellite system (GNSS). Due to the low signal-to-noise ratio and compound orthogonal spread spectrum modulation using multiple spread spectrum codes, it is difficult to extract Doppler from the opportunity signals broadcasted by the Globalstar low Earth orbit communication constellation. Therefore, the research on Doppler positioning technology based on Globalstar opportunity signals was carried out. By analyzing the Globalstar pilot signal through measured data, the decoding method of the Globalstar pilot spread spectrum signal using square cross-term was proposed, and the decoding results were further used to extract Doppler observation by parallel code phase search acquisition algorithm. Finally, a mathematical model of coarse-time Doppler positioning was established, and the positioning was realized. The results of the experiments show that horizontal positioning performance with an accuracy of better than 100 m can be achieved by using the actual signals of two Globalstars.
-
Key words:
- positioning /
- opportunity signal /
- low Earth orbit satellites /
- Globalstar /
- Doppler /
- spread spectrum communication
-
表 1 导频信号扩频调制使用PN码参数
Table 1. Parameters of PN code for pilot signal spread spectrum modulation
PN码种类 码速率/(码片·s−1) 码片个数 码周期/s 导频短PN码 1.2288 ×10632768 2/75 外PN码 1200 288 0.24 内PN码(一对) 1.2288 ×1061024 1/ 1200 -
[1] HOLMES J K. GNSS与无线通信中的扩频系统[M]. 陈军, 刘义, 唐卓, 等, 译. 北京: 电子工业出版社, 2013: 1-2.HOLMES J K. Spread spectrum systems for GNSS and wireless communications[M]. CHEN J, LIU Y, TANG Z, et al, translated. Beijing: Publishing House of Electronics Industry, 2013: 1-2(in Chinese). [2] KHALIFE J J, KASSAS Z M. Receiver design for Doppler positioning with LEO satellites[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE Press, 2019: 5506-5510. [3] KHALIFE J J, NEINAVAIE M, KASSAS Z M. The first carrier phase tracking and positioning results with starlink LEO satellite signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 58(2): 1487-1491. [4] NEINAVAIE M, KHALIFE J J, KASSAS Z M. Doppler stretch estimation with application to tracking Globalstar satellite signals[C]//Proceedings of the IEEE Military Communications Conference. Piscataway: IEEE Press, 2021: 647-651. [5] 秦红磊, 谭滋中, 丛丽, 等. 基于铱星机会信号的定位技术[J]. 北京航空航天大学学报, 2019, 45(9): 1691-1699.QIN H L, TAN Z Z, CONG L, et al. Positioning technology based on IRIDIUM signals of opportunity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1691-1699(in Chinese). [6] 秦红磊, 谭滋中, 丛丽, 等. 基于ORBCOMM卫星机会信号的定位技术[J]. 北京航空航天大学学报, 2020, 46(11): 1999-2006.QIN H L, TAN Z Z, CONG L, et al. Positioning technology based on ORBCOMM signals of opportunity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 1999-2006(in Chinese). [7] 秦红磊, 张宇. 星链机会信号定位方法[J]. 导航定位学报, 2023, 11(1): 67-73. doi: 10.3969/j.issn.2095-4999.2023.01.010QIN H L, ZHANG Y. Positioning technology based on starlink signal of opportunity[J]. Journal of Navigation and Positioning, 2023, 11(1): 67-73(in Chinese). doi: 10.3969/j.issn.2095-4999.2023.01.010 [8] 闵士权. 卫星通信系统工程设计与应用[M]. 北京: 电子工业出版社, 2015: 361.MIN S Q. Engineering design and application of satellite communication system[M]. Beijing: Publishing House of Electronics Industry, 2015: 361 (in Chinese). [9] Globalstar. Globalstar overview[EB/OL]. [2022-12-26]. https://www.globalstar.com/Globalstar/media/Globalstar/Downloads/Spectrum/GlobalstarOverviewPresentation.pdf. [10] 孙宇彤. WCDMA空中接口技术[M]. 北京: 人民邮电出版社, 2011: 56-68.SUN Y T. WCDMA air interface technology[M]. Beijing: Posts & Telecom Press, 2011: 56-68(in Chinese). [11] Globalstar. Description of the Globalstar system[EB/OL]. [2022-12-26]. https://fccid.io/TSEFAU200RA/User-Manual/User-Manual-743692. [12] BORIO D. Squaring and cross-correlation codeless tracking: Analysis and generalisation[J]. IET Radar, Sonar & Navigation, 2011, 5(9): 958. [13] 陈凌, 汪远玲, 邓强, 等. 扩频信号通过非线性系统信噪比恶化分析[J]. 电讯技术, 2005, 45(6): 143-147. doi: 10.3969/j.issn.1001-893X.2005.06.034CHEN L, WANG Y L, DENG Q, et al. Signal-to-noise deterioration analysis of spread spectrum signal in nonlinear systems[J]. Telecommunication Engineering, 2005, 45(6): 143-147(in Chinese). doi: 10.3969/j.issn.1001-893X.2005.06.034 [14] GAO G X X. Towards navigation based on 120 satellites: Analyzing the new signals[D]. Palo Alto: Stanford University, 2008: 38-46. [15] 姚铮, 陆明泉. 新一代卫星导航系统信号设计原理与实现技术[M]. 北京: 电子工业出版社, 2016: 148.YAO Z, LU M Q. Signal design principle and implementation technology of new generation satellite navigation system[M]. Beijing: Publishing House of Electronics Industry, 2016: 148(in Chinese). [16] YOO W J, KIM L, LEE Y D, et al. A coarse-time positioning method for improved availability[J]. GPS Solutions, 2019, 24(1): 2. [17] VAN DIGGELEN F S T. A-GPS: Assisted GPS, GNSS, and SBAS[M]. Boston: Artech House, 2009: 50. [18] VALLADO D, CRAWFORD P. SGP4 orbit determination[C]//Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston: AIAA, 2008. -