留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SVT的广义斜投影三维极化滤波方法

王栗沅 何华锋 何耀民 韩晓斐 李震

王栗沅,何华锋,何耀民,等. 基于SVT的广义斜投影三维极化滤波方法[J]. 北京航空航天大学学报,2025,51(2):633-643 doi: 10.13700/j.bh.1001-5965.2023.0019
引用本文: 王栗沅,何华锋,何耀民,等. 基于SVT的广义斜投影三维极化滤波方法[J]. 北京航空航天大学学报,2025,51(2):633-643 doi: 10.13700/j.bh.1001-5965.2023.0019
WANG L Y,HE H F,HE Y M,et al. Three-dimensional polarization filtering method of generalized oblique projection based on SVT[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):633-643 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0019
Citation: WANG L Y,HE H F,HE Y M,et al. Three-dimensional polarization filtering method of generalized oblique projection based on SVT[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):633-643 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0019

基于SVT的广义斜投影三维极化滤波方法

doi: 10.13700/j.bh.1001-5965.2023.0019
详细信息
    通讯作者:

    E-mail:hhf0903@163.com

  • 中图分类号: TN911.7

Three-dimensional polarization filtering method of generalized oblique projection based on SVT

More Information
  • 摘要:

    针对不同噪声背景下广义斜投影滤波存在滤波“死角”,且易受噪声协方差矩阵估计误差影响的问题,提出了一种基于奇异值阈值(SVT)的广义斜投影极化-空域联合滤波方法。以均匀圆阵极化敏感阵列为基础建立阵列接收信号模型;利用最小化干扰约束广义斜投影算子设计广义斜投影三维极化滤波器;在干扰参数未知的情况下,提出了一种基于SVT的滤波权矢量计算方法;通过对滤波器性能进行理论分析并与三种同类方法仿真对比,结果表眀:基于SVT的广义斜投影三维极化滤波方法能够在无需估计噪声协方差矩阵的条件下实现干扰抑制并恢复出目标信号。

     

  • 图 1  本文方法总体思路示意图

    Figure 1.  General idea of proposed method

    图 2  无噪协方差矩阵估计收敛曲线图

    Figure 2.  Convergence curve of noise-free covariance matrix estimation

    图 3  阵元数对奇异值阈值收敛性的影响

    Figure 3.  Influence of number of array elements on convergence of SVT

    图 4  本文算法自适应波束

    Figure 4.  Adaptive beam of proposed algorithm

    图 5  不同入射信号参数下联合滤波器的滤波性能

    Figure 5.  Filtering performance of joint filters under different incident signal parameters

    图 6  不同噪声背景下目标极化幅角误差对MSE的影响

    Figure 6.  Influence of target polarization amplitude and angle error on MSE under different noise backgrounds

    图 7  噪声协方差矩阵估计误差对输出SIR的影响

    Figure 7.  Influence of noise covariance matrix estimation error on output SIR

    图 8  快拍采样率对输出SINR的影响

    Figure 8.  Influence of snapshot sampling rate on output SINR

    图 9  输入SNR对输出SINR的影响

    Figure 9.  Influence of input SNR on output SINR

    表  1  入射信号参数

    Table  1.   Incident signal parameter

    类型 方位角θ/(°) 俯仰角φ/(°) 极化幅角γ/(°) 极化相位差η/(°)
    目标1 300.2 10.4 30.1 80.2
    干扰1 70.2 30.2 40.8 60.5
    干扰2 120.3 60.6 75.4 70.6
    下载: 导出CSV
  • [1] BEHRENS R T, SCHARF L L. Signal processing applications of oblique projection operators[J]. IEEE Transactions on Signal Processing, 2002, 42(6): 1413-1424.
    [2] RAO C R, YANAI H. General definition and decomposition of projectors and some applications to statistical problems[J]. Journal of Statistical Planning and Inference, 1979, 3(1): 1-17. doi: 10.1016/0378-3758(79)90038-7
    [3] STEWART G W. On the numerical analysis of oblique projectors[J]. SIAM Journal on Matrix Analysis and Applications, 2011, 32(1): 309-348. doi: 10.1137/100792093
    [4] 陈伯孝, 项喆, 王睿智, 等. 基于斜投影预处理的自适应波束形成方法[J]. 制导与引信, 2017, 38(2): 18-24. doi: 10.3969/j.issn.1671-0576.2017.02.005

    CHEN B X, XIANG Z, WANG R Z, et al. An adaptive beamforming method based on oblique-projection preprocessing[J]. Guidance & Fuze, 2017, 38(2): 18-24(in Chinese). doi: 10.3969/j.issn.1671-0576.2017.02.005
    [5] 唐佳, 于海洋, 杨福荣. 一种新的基于空极联合估计抗干扰方法[J]. 电子信息对抗技术, 2021, 36(6): 18-22. doi: 10.3969/j.issn.1674-2230.2021.06.004

    TANG J, YU H Y, YANG F R. A new algorithm of anti-jamming based on space-polar joint estimation[J]. Electronic Information Warfare Technology, 2021, 36(6): 18-22(in Chinese). doi: 10.3969/j.issn.1674-2230.2021.06.004
    [6] 毛兴鹏, 刘爱军, 邓维波, 等. 斜投影极化滤波器[J]. 电子学报, 2010, 38(9): 2003-2008.

    MAO X P, LIU A J, DENG W B, et al. An oblique projecting polarization filter[J]. Acta Electronica Sinica, 2010, 38(9): 2003-2008(in Chinese).
    [7] CAO B, LIU A J, MAO X P, et al. An oblique projection polarization filter[C]//Proceedings of 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing. Piscataway: IEEE Press, 2008: 1-4.
    [8] MAO X P, LIU A J, HOU H J, et al. Oblique projection polarisation filtering for interference suppression in high-frequency surface wave radar[J]. IET Radar, Sonar & Navigation, 2012, 6(2): 71.
    [9] ZHANG Q Y, CAO B, WANG J, et al. Polarization filtering technique based on oblique projections[J]. Science China Information Sciences, 2010, 53(5): 1056-1066. doi: 10.1007/s11432-010-0100-2
    [10] 刘爱军, 宋立众, 王季刚, 等. 斜投影三维极化滤波[J]. 哈尔滨工业大学学报, 2012, 44(3): 75-80. doi: 10.11918/j.issn.0367-6234.2012.03.015

    LIU A J, SONG L Z, WANG J G, et al. Three-dimensions polarization filtering based on oblique projection[J]. Journal of Harbin Institute of Technology, 2012, 44(3): 75-80(in Chinese). doi: 10.11918/j.issn.0367-6234.2012.03.015
    [11] LU Y W, MA J Z, SHI L F, et al. Multiple interferences suppression with space-polarization null-decoupling for polarimetrie array[J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 44-52. doi: 10.23919/JSEE.2021.000006
    [12] LU Y W, MA J Z, SHI L F. A space-polarization nulling method for multiple mainlobe interference[C]//Proceedings of 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). Piscataway: IEEE Press, 2020: 1194-1197.
    [13] 杨书宁, 杨仲平, 张剑云, 等. 基于稀疏重构的空域-极化域联合抗主瓣干扰方法[J]. 信号处理, 2022, 38(2): 401-409.

    YANG S N, YANG Z P, ZHANG J Y, et al. Space-polarization domain combined anti-mainlobe jamming method based on sparse reconstruction[J]. Journal of Signal Processing, 2022, 38(2): 401-409(in Chinese).
    [14] 孟昊宇, 杨小鹏, 高升, 等. 基于特征值斜投影的主瓣干扰抑制方法[J]. 信号处理, 2022, 38(2): 439-444.

    MENG H Y, YANG X P, GAO S, et al. Main lobe interference suppression method based on eigenvalue oblique projection[J]. Journal of Signal Processing, 2022, 38(2): 439-444(in Chinese).
    [15] SEGHOUANE A K. A kullback-leibler methodology for unconditional ML DOA estimation in unknown nonuniform noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 3012-3021. doi: 10.1109/TAES.2011.6034684
    [16] PESAVENTO M, GERSHMAN A B. Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise[J]. IEEE Transactions on Signal Processing, 2002, 49(7): 1310-1324.
    [17] CHEN M H, WANG Z Y. Subspace tracking in colored noise based on oblique projection[C]//Proceedings of 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings. Piscataway: IEEE Press, 2006: 556-559.
    [18] VAN VEEN B D, BUCKLEY K M. Beamforming: A versatile approach to spatial filtering[J]. IEEE ASSP Magazine, 1988, 5(2): 4-24. doi: 10.1109/53.665
    [19] HOU H J, MAO X P, LI S B. A generalized oblique projection operator for interference suppression under colored noise[C]//Proceedings of 2012 IEEE Radar Conference. Piscataway: IEEE Press, 2012: 687-692.
    [20] 侯慧军, 毛兴鹏, 刘爱军. 不同噪声背景下基于广义斜投影算子的滤波方法[J]. 系统工程与电子技术, 2013, 35(4): 713-719. doi: 10.3969/j.issn.1001-506X.2013.04.06

    HOU H J, MAO X P, LIU A J. Filtering approach based on generalized oblique projection operators under different contaminating noises[J]. Systems Engineering and Electronics, 2013, 35(4): 713-719(in Chinese). doi: 10.3969/j.issn.1001-506X.2013.04.06
    [21] LI S, LI Q W, ZHU Z H, et al. The global geometry of centralized and distributed low-rank matrix recovery without regularization[J]. IEEE Signal Processing Letters, 2020, 27: 1400-1404. doi: 10.1109/LSP.2020.3008876
    [22] YANG F, CHEN X, CHAI L. Hyperspectral image destriping and denoising using stripe and spectral low-rank matrix recovery and global spatial-spectral total variation[J]. Remote Sensing, 2021, 13(4): 827. doi: 10.3390/rs13040827
    [23] LI J, CHEN F J, WANG Y D, et al. Spatial spectrum estimation of incoherently distributed sources based on low-rank matrix recovery[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6333-6347. doi: 10.1109/TVT.2020.2986783
    [24] DAVENPORT M A, ROMBERG J. An overview of low-rank matrix recovery from incomplete observations[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(4): 608-622. doi: 10.1109/JSTSP.2016.2539100
    [25] WRIGHT J, GANESH A, RAO S, et al. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization [C]// Advances in Neural Information Processing Systems 22 (NIPS 2009). La Jolla: NeurIPS, 2009: 1-9.
    [26] CAI J F, CANDÈS E J, SHEN Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982. doi: 10.1137/080738970
    [27] LIAO B, GUO C T, HUANG L, et al. Matrix completion based direction-of-arrival estimation in nonuniform noise[C]//Proceedings of 2016 IEEE International Conference on Digital Signal Processing. Piscataway: IEEE Press, 2016: 66-69.
    [28] LIN Z C, CHEN M M, MA Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[J]. Eprint Arxiv, 2010, 9: 1-20.
    [29] 时春鹏, 何华锋, 何耀民, 等. 基于均匀圆阵矢量传感器的 DOA 和极化参数联合估计[J]. 北京航空航天大学学报, 2024, 50(4): 1325-1335.

    SHI C P, HE H F, HE Y M, et al. Joint estimation of DOA and polarization parameters based on uniform circle array with vector sensor[J]. Journal of Beijing University of Aeronautics andAstronautics, 2024, 50(4): 1325-1335(in Chinese).
    [30] WANG W D, ZHANG F, WANG J J. Low-rank matrix recovery via regularized nuclear norm minimization[J]. Applied and Computational Harmonic Analysis, 2021, 54: 1-19. doi: 10.1016/j.acha.2021.03.001
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  72
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-11
  • 录用日期:  2023-06-09
  • 网络出版日期:  2023-07-07
  • 整期出版日期:  2025-02-28

目录

    /

    返回文章
    返回
    常见问答