Three-dimensional polarization filtering method of generalized oblique projection based on SVT
-
摘要:
针对不同噪声背景下广义斜投影滤波存在滤波“死角”,且易受噪声协方差矩阵估计误差影响的问题,提出了一种基于奇异值阈值(SVT)的广义斜投影极化-空域联合滤波方法。以均匀圆阵极化敏感阵列为基础建立阵列接收信号模型;利用最小化干扰约束广义斜投影算子设计广义斜投影三维极化滤波器;在干扰参数未知的情况下,提出了一种基于SVT的滤波权矢量计算方法;通过对滤波器性能进行理论分析并与三种同类方法仿真对比,结果表眀:基于SVT的广义斜投影三维极化滤波方法能够在无需估计噪声协方差矩阵的条件下实现干扰抑制并恢复出目标信号。
Abstract:The generalized oblique projection filter has a “blind area of filtering” and is easily influenced by the estimation error of the noise covariance matrix in different noise backgrounds. To address these issues, a generalized oblique projection polarization-spatial domain joint filtering method based on singular value thresholding (SVT) was proposed. Firstly, based on the uniform circular array polarization-sensitive array, the received signal model of the array was established. Secondly, the three-dimensional polarization filter of the generalized oblique projection was designed by using the minimized interference constrained generalized oblique projection operator with minimal interference constraints. Then, under the condition of unknown interference parameters, a filtering weight vector calculation method based on SVT was proposed. Finally, through the theoretical analysis of the filter performance and the simulation comparison with three similar algorithms, the results show that the three-dimensional polarization filtering method of generalized oblique projection based on SVT can suppress interference and recover the target signal without estimating the noise covariance matrix.
-
表 1 入射信号参数
Table 1. Incident signal parameter
类型 方位角θ/(°) 俯仰角φ/(°) 极化幅角γ/(°) 极化相位差η/(°) 目标1 300.2 10.4 30.1 80.2 干扰1 70.2 30.2 40.8 60.5 干扰2 120.3 60.6 75.4 70.6 -
[1] BEHRENS R T, SCHARF L L. Signal processing applications of oblique projection operators[J]. IEEE Transactions on Signal Processing, 2002, 42(6): 1413-1424. [2] RAO C R, YANAI H. General definition and decomposition of projectors and some applications to statistical problems[J]. Journal of Statistical Planning and Inference, 1979, 3(1): 1-17. doi: 10.1016/0378-3758(79)90038-7 [3] STEWART G W. On the numerical analysis of oblique projectors[J]. SIAM Journal on Matrix Analysis and Applications, 2011, 32(1): 309-348. doi: 10.1137/100792093 [4] 陈伯孝, 项喆, 王睿智, 等. 基于斜投影预处理的自适应波束形成方法[J]. 制导与引信, 2017, 38(2): 18-24. doi: 10.3969/j.issn.1671-0576.2017.02.005CHEN B X, XIANG Z, WANG R Z, et al. An adaptive beamforming method based on oblique-projection preprocessing[J]. Guidance & Fuze, 2017, 38(2): 18-24(in Chinese). doi: 10.3969/j.issn.1671-0576.2017.02.005 [5] 唐佳, 于海洋, 杨福荣. 一种新的基于空极联合估计抗干扰方法[J]. 电子信息对抗技术, 2021, 36(6): 18-22. doi: 10.3969/j.issn.1674-2230.2021.06.004TANG J, YU H Y, YANG F R. A new algorithm of anti-jamming based on space-polar joint estimation[J]. Electronic Information Warfare Technology, 2021, 36(6): 18-22(in Chinese). doi: 10.3969/j.issn.1674-2230.2021.06.004 [6] 毛兴鹏, 刘爱军, 邓维波, 等. 斜投影极化滤波器[J]. 电子学报, 2010, 38(9): 2003-2008.MAO X P, LIU A J, DENG W B, et al. An oblique projecting polarization filter[J]. Acta Electronica Sinica, 2010, 38(9): 2003-2008(in Chinese). [7] CAO B, LIU A J, MAO X P, et al. An oblique projection polarization filter[C]//Proceedings of 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing. Piscataway: IEEE Press, 2008: 1-4. [8] MAO X P, LIU A J, HOU H J, et al. Oblique projection polarisation filtering for interference suppression in high-frequency surface wave radar[J]. IET Radar, Sonar & Navigation, 2012, 6(2): 71. [9] ZHANG Q Y, CAO B, WANG J, et al. Polarization filtering technique based on oblique projections[J]. Science China Information Sciences, 2010, 53(5): 1056-1066. doi: 10.1007/s11432-010-0100-2 [10] 刘爱军, 宋立众, 王季刚, 等. 斜投影三维极化滤波[J]. 哈尔滨工业大学学报, 2012, 44(3): 75-80. doi: 10.11918/j.issn.0367-6234.2012.03.015LIU A J, SONG L Z, WANG J G, et al. Three-dimensions polarization filtering based on oblique projection[J]. Journal of Harbin Institute of Technology, 2012, 44(3): 75-80(in Chinese). doi: 10.11918/j.issn.0367-6234.2012.03.015 [11] LU Y W, MA J Z, SHI L F, et al. Multiple interferences suppression with space-polarization null-decoupling for polarimetrie array[J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 44-52. doi: 10.23919/JSEE.2021.000006 [12] LU Y W, MA J Z, SHI L F. A space-polarization nulling method for multiple mainlobe interference[C]//Proceedings of 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). Piscataway: IEEE Press, 2020: 1194-1197. [13] 杨书宁, 杨仲平, 张剑云, 等. 基于稀疏重构的空域-极化域联合抗主瓣干扰方法[J]. 信号处理, 2022, 38(2): 401-409.YANG S N, YANG Z P, ZHANG J Y, et al. Space-polarization domain combined anti-mainlobe jamming method based on sparse reconstruction[J]. Journal of Signal Processing, 2022, 38(2): 401-409(in Chinese). [14] 孟昊宇, 杨小鹏, 高升, 等. 基于特征值斜投影的主瓣干扰抑制方法[J]. 信号处理, 2022, 38(2): 439-444.MENG H Y, YANG X P, GAO S, et al. Main lobe interference suppression method based on eigenvalue oblique projection[J]. Journal of Signal Processing, 2022, 38(2): 439-444(in Chinese). [15] SEGHOUANE A K. A kullback-leibler methodology for unconditional ML DOA estimation in unknown nonuniform noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 3012-3021. doi: 10.1109/TAES.2011.6034684 [16] PESAVENTO M, GERSHMAN A B. Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise[J]. IEEE Transactions on Signal Processing, 2002, 49(7): 1310-1324. [17] CHEN M H, WANG Z Y. Subspace tracking in colored noise based on oblique projection[C]//Proceedings of 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings. Piscataway: IEEE Press, 2006: 556-559. [18] VAN VEEN B D, BUCKLEY K M. Beamforming: A versatile approach to spatial filtering[J]. IEEE ASSP Magazine, 1988, 5(2): 4-24. doi: 10.1109/53.665 [19] HOU H J, MAO X P, LI S B. A generalized oblique projection operator for interference suppression under colored noise[C]//Proceedings of 2012 IEEE Radar Conference. Piscataway: IEEE Press, 2012: 687-692. [20] 侯慧军, 毛兴鹏, 刘爱军. 不同噪声背景下基于广义斜投影算子的滤波方法[J]. 系统工程与电子技术, 2013, 35(4): 713-719. doi: 10.3969/j.issn.1001-506X.2013.04.06HOU H J, MAO X P, LIU A J. Filtering approach based on generalized oblique projection operators under different contaminating noises[J]. Systems Engineering and Electronics, 2013, 35(4): 713-719(in Chinese). doi: 10.3969/j.issn.1001-506X.2013.04.06 [21] LI S, LI Q W, ZHU Z H, et al. The global geometry of centralized and distributed low-rank matrix recovery without regularization[J]. IEEE Signal Processing Letters, 2020, 27: 1400-1404. doi: 10.1109/LSP.2020.3008876 [22] YANG F, CHEN X, CHAI L. Hyperspectral image destriping and denoising using stripe and spectral low-rank matrix recovery and global spatial-spectral total variation[J]. Remote Sensing, 2021, 13(4): 827. doi: 10.3390/rs13040827 [23] LI J, CHEN F J, WANG Y D, et al. Spatial spectrum estimation of incoherently distributed sources based on low-rank matrix recovery[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6333-6347. doi: 10.1109/TVT.2020.2986783 [24] DAVENPORT M A, ROMBERG J. An overview of low-rank matrix recovery from incomplete observations[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(4): 608-622. doi: 10.1109/JSTSP.2016.2539100 [25] WRIGHT J, GANESH A, RAO S, et al. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization [C]// Advances in Neural Information Processing Systems 22 (NIPS 2009). La Jolla: NeurIPS, 2009: 1-9. [26] CAI J F, CANDÈS E J, SHEN Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982. doi: 10.1137/080738970 [27] LIAO B, GUO C T, HUANG L, et al. Matrix completion based direction-of-arrival estimation in nonuniform noise[C]//Proceedings of 2016 IEEE International Conference on Digital Signal Processing. Piscataway: IEEE Press, 2016: 66-69. [28] LIN Z C, CHEN M M, MA Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[J]. Eprint Arxiv, 2010, 9: 1-20. [29] 时春鹏, 何华锋, 何耀民, 等. 基于均匀圆阵矢量传感器的 DOA 和极化参数联合估计[J]. 北京航空航天大学学报, 2024, 50(4): 1325-1335.SHI C P, HE H F, HE Y M, et al. Joint estimation of DOA and polarization parameters based on uniform circle array with vector sensor[J]. Journal of Beijing University of Aeronautics andAstronautics, 2024, 50(4): 1325-1335(in Chinese). [30] WANG W D, ZHANG F, WANG J J. Low-rank matrix recovery via regularized nuclear norm minimization[J]. Applied and Computational Harmonic Analysis, 2021, 54: 1-19. doi: 10.1016/j.acha.2021.03.001 -