留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器与AGV联合利用再生能源的混合流水车间调度问题

朱光宇 贾唯鸿 李德彪

朱光宇,贾唯鸿,李德彪. 机器与AGV联合利用再生能源的混合流水车间调度问题[J]. 北京航空航天大学学报,2025,51(2):368-379 doi: 10.13700/j.bh.1001-5965.2023.0021
引用本文: 朱光宇,贾唯鸿,李德彪. 机器与AGV联合利用再生能源的混合流水车间调度问题[J]. 北京航空航天大学学报,2025,51(2):368-379 doi: 10.13700/j.bh.1001-5965.2023.0021
ZHU G Y,JIA W H,LI D B. Hybrid flow-shop scheduling problem considering joint of machine and AGV with renewable energy[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):368-379 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0021
Citation: ZHU G Y,JIA W H,LI D B. Hybrid flow-shop scheduling problem considering joint of machine and AGV with renewable energy[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):368-379 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0021

机器与AGV联合利用再生能源的混合流水车间调度问题

doi: 10.13700/j.bh.1001-5965.2023.0021
基金项目: 工信部2016智能制造综合标准化与新模式应用项目(工信部联装(2016)213号);福建省自然科学基金(2023J01256,2024J01349)
详细信息
    通讯作者:

    E-mail:zhugy@fzu.edu.cn

  • 中图分类号: V221+.3;TB553

Hybrid flow-shop scheduling problem considering joint of machine and AGV with renewable energy

Funds: MIIT 2016 Intelligent Manufacturing Comprehensive Standardization and New Pattern Application Program, China ((2016)213); Natural Science Foundation of Fujian Province, China (2023J01256,2024J01349)
More Information
  • 摘要:

    中国的制造业正经历着数字化和绿色低碳转型。为实现节能减排,提高设备利用率,针对考虑可再生能源的混合流水车间,建立机器与自动导引车(AGV)联合利用再生能源的混合流水车间调度问题(HFSP-MA-RE)数学模型。为求解该模型,提出基于提前调度的机器与AGV联合调度策略、能源分配策略,在考虑AGV路径优化和充电约束的情况下,实现对最大完工时间、碳排放量、总能耗和AGV利用率4个目标的优化。采用基于正向灰靶模型的多目标最佳觅食算法(PPGT_OFA)求解该问题。通过24个测试实例及1个工程应用,将所提算法与5个多目标优化算法进行实验,验证了HFSP-MA-RE模型及PPGT_OFA算法解决多目标优化问题的有效性。

     

  • 图 1  提前调度

    Figure 1.  Advance scheduling

    图 2  顺序调度

    Figure 2.  Sequential scheduling

    图 3  车间布局及改进A*算法示意

    Figure 3.  Illustration of shop layout and improved A* algorithm

    图 4  机器与AGV联合调度策略流程

    Figure 4.  Flow of joint scheduling strategy of machine and AGV

    图 5  解与正负靶心位置关系

    Figure 5.  Position relation of solution and positive and negative target centers

    图 6  4×3工序编码

    Figure 6.  4×3 operation code

    图 7  PPGT_OFA算法流程

    Figure 7.  Process of PPGT_OFA algorithm

    图 8  Pareto解集分布

    Figure 8.  Pareto solution set distribution

    图 9  PPGT_OFA 算法收敛曲线

    Figure 9.  Convergence curves of PPGT_OFA algorithm

    图 10  PPGT_OFA 算法最佳方案

    Figure 10.  Optimal PPGT_OFA scheme

    图 11  未使用联合调度策略优化方案

    Figure 11.  Optimization scheme without using joint scheduling strategy

    表  1  算例测试结果(小规模算例)

    Table  1.   Example test results (small scale examples)

    规模 SP
    PPGT_OFA BCE-MOEA/D NSGA-Ⅱ/SDR NMPSO MOEA/D-DU NSGA-Ⅱ
    5×3×3 0.08 0.15 0.23 0.19 0.16 0.13
    5×4×3 0.10 0.14 0.14 0.16 0.21 0.14
    5×5×4 0.10 0.14 0.11 0.15 0.16 0.12
    10×3×3 0.11 0.16 0.13 0.15 0.16 0.14
    10×3×4 0.09 0.14 0.17 0.10 0.16 0.14
    10×3×5 0.07 0.15 0.08 0.13 0.15 0.11
    10×4×5 0.09 0.13 0.12 0.18 0.14 0.13
    10×5×3 0.09 0.15 0.14 0.15 0.17 0.14
    10×5×4 0.08 0.10 0.12 0.15 0.10 0.11
    10×5×5 0.12 0.19 0.12 0.10 0.18 0.10
    规模 GD
    PPGT_OFA BCE-MOEA/D NSGA-Ⅱ/SDR NMPSO MOEA/D-DU NSGA-Ⅱ
    5×3×3 0.02 0.11 0.02 0.10 0.09 0.03
    5×4×3 0.01 0.11 0.02 0.08 0.09 0.04
    5×5×4 0.02 0.11 0.04 0.09 0.10 0.03
    10×3×3 0.02 0.12 0.02 0.06 0.11 0.03
    10×3×4 0.01 0.13 0.03 0.08 0.12 0.03
    10×3×5 0.01 0.11 0.02 0.07 0.09 0.04
    10×4×5 0.02 0.10 0.03 0.07 0.09 0.03
    10×5×3 0.04 0.14 0.04 0.09 0.12 0.06
    10×5×4 0.02 0.10 0.03 0.07 0.09 0.04
    10×5×5 0.03 0.10 0.02 0.07 0.08 0.04
    规模 IGD
    PPGT_OFA BCE-MOEA/D NSGA-Ⅱ/SDR NMPSO MOEA/D-DU NSGA-Ⅱ
    5×3×3 0.24 0.35 0.13 0.27 0.27 0.13
    5×4×3 0.28 0.36 0.14 0.31 0.27 0.15
    5×5×4 0.19 0.34 0.18 0.28 0.27 0.19
    10×3×3 0.10 0.37 0.11 0.20 0.21 0.12
    10×3×4 0.12 0.48 0.14 0.19 0.28 0.16
    10×3×5 0.23 0.35 0.19 0.23 0.27 0.16
    10×4×5 0.21 0.31 0.20 0.30 0.25 0.11
    10×5×3 0.29 0.47 0.15 0.30 0.32 0.19
    10×5×4 0.25 0.33 0.17 0.33 0.27 0.17
    10×5×5 0.18 0.38 0.34 0.26 0.31 0.19
    下载: 导出CSV

    表  2  算例测试结果(大规模算例)

    Table  2.   Example test results (large scale examples)

    规模 SP
    PPGT_OFA BCE-MOEA/D NSGA-Ⅱ/SDR NMPSO MOEA/D-DU NSGA-Ⅱ
    30×3×3 0.10 0.12 0.19 0.16 0.18 0.18
    30×3×5 0.07 0.11 0.11 0.14 0.14 0.12
    30×4×3 0.11 0.11 0.10 0.11 0.12 0.12
    30×4×4 0.08 0.10 0.09 0.14 0.12 0.12
    30×4×5 0.08 0.12 0.12 0.11 0.12 0.13
    30×5×4 0.08 0.14 0.09 0.11 0.15 0.13
    30×5×5 0.10 0.11 0.11 0.12 0.12 0.11
    50×3×3 0.08 0.17 0.14 0.12 0.10 0.12
    50×3×5 0.06 0.08 0.13 0.09 0.12 0.10
    50×4×3 0.10 0.11 0.13 0.11 0.11 0.13
    50×4×4 0.07 0.12 0.12 0.14 0.13 0.11
    50×4×5 0.09 0.11 0.10 0.11 0.10 0.10
    50×5×4 0.10 0.14 0.13 0.14 0.14 0.15
    50×5×5 0.07 0.11 0.12 0.12 0.10 0.10
    规模 GD
    PPGT_OFA BCE-MOEA/D NSGA-Ⅱ/SDR NMPSO MOEA/D-DU NSGA-Ⅱ
    30×3×3 0.05 0.13 0.04 0.08 0.13 0.04
    30×3×5 0.03 0.12 0.04 0.09 0.11 0.06
    30×4×3 0.02 0.10 0.04 0.07 0.08 0.04
    30×4×4 0.03 0.10 0.04 0.08 0.10 0.04
    30×4×5 0.02 0.10 0.03 0.07 0.09 0.03
    30×5×4 0.04 0.12 0.04 0.06 0.11 0.04
    30×5×5 0.03 0.10 0.04 0.08 0.08 0.04
    50×3×3 0.04 0.11 0.04 0.09 0.11 0.06
    50×3×5 0.05 0.13 0.06 0.07 0.11 0.09
    50×4×3 0.02 0.12 0.03 0.10 0.11 0.03
    50×4×4 0.03 0.11 0.03 0.07 0.10 0.03
    50×4×5 0.03 0.10 0.03 0.05 0.08 0.03
    50×5×4 0.02 0.10 0.04 0.06 0.11 0.03
    50×5×5 0.01 0.10 0.03 0.06 0.09 0.01
    规模 IGD
    PPGT_OFA BCE-MOEA/D NSGA-Ⅱ/SDR NMPSO MOEA/D-DU NSGA-Ⅱ
    30×3×3 0.14 0.38 0.20 0.28 0.29 0.16
    30×3×5 0.33 0.46 0.15 0.27 0.29 0.15
    30×4×3 0.14 0.31 0.17 0.35 0.19 0.14
    30×4×4 0.22 0.36 0.15 0.38 0.29 0.14
    30×4×5 0.25 0.38 0.13 0.32 0.29 0.14
    30×5×4 0.30 0.50 0.22 0.31 0.31 0.13
    30×5×5 0.15 0.30 0.16 0.38 0.26 0.20
    50×3×3 0.14 0.05 0.12 0.37 0.27 0.19
    50×3×5 0.22 0.42 0.18 0.51 0.32 0.20
    50×4×3 0.18 0.30 0.17 0.44 0.24 0.12
    50×4×4 0.31 0.42 0.21 0.34 0.32 0.12
    50×4×5 0.25 0.39 0.21 0.41 0.32 0.12
    50×5×4 0.16 0.38 0.24 0.31 0.28 0.18
    50×5×5 0.19 0.39 0.20 0.29 0.35 0.11
    下载: 导出CSV

    表  3  各批电池在每道工艺不同机器上的加工时间

    Table  3.   Processing time of each batch of batteries on different machine for each process h

    工序 机器 第1批电池 第2批电池 第3批电池 第4批电池 第5批电池 第6批电池 第7批电池 第8批电池 第9批电池 第10批电池
    电芯组装 M1 3.9 3.6 4.2 4.8 3.4 4.1 3.6 4 2.7 3
    M2 2.5 4.5 3.3 3.4 2.6 2.5 3 4.8 2.2 4.4
    端板侧板焊接 M3 3.1 3.8 3.3 2.7 2.3 4.9 3.6 2.5 4.3 4.4
    M4 2.5 3 2.4 4.3 4.5 3.6 3.2 4.8 4 4.6
    M5 4.3 2.9 2.1 4.6 2.5 4 3.1 4.4 4.1 3.5
    线束隔板激光焊接 M6 4.6 3.4 2.9 4.2 2.5 2.1 2.5 3.7 3.9 3.9
    M7 3.1 3.3 3 3.9 4 4.4 2.8 3.3 3.3 4.9
    模组测试 M8 4.1 3.1 4 2.3 4.7 4.2 2.1 2.8 3.2 3.3
    M9 2.9 3.7 4.9 4 3.5 2.4 4.8 4.3 4.4 2.2
    下载: 导出CSV

    表  4  实例优化结果

    Table  4.   Instance optimization results

    算法 最大完工
    时间/h
    碳排放
    量/kg
    总能耗/
    (kW·h)
    AGV
    利用率
    PPGT_OFA 57.5 723.8 4061.7 0.647
    BCE-MOEA/D 66.3 1135.8 4394.9 0.606
    NSGA-II/SDR 63.6 1041.0 4294.3 0.627
    NMPSO 61.2 1437.2 4341.1 0.632
    MOEA/D-DU 63.2 1078.0 4590.8 0.622
    NSGA-II 62.6 850.2 4507.4 0.639
    车间方案 84.6 2101.3 5416.6 0.471
    下载: 导出CSV
  • [1] 李颖俐, 李新宇, 高亮. 混合流水车间调度问题研究综述[J]. 中国机械工程, 2020, 31(23): 2798-2813. doi: 10.3969/j.issn.1004-132X.2020.23.004

    LI Y L, LI X Y, GAO L. Review on hybrid flow shop scheduling problems[J]. China Mechanical Engineering, 2020, 31(23): 2798-2813 (in Chinese). doi: 10.3969/j.issn.1004-132X.2020.23.004
    [2] HAOUARI M, HIDRI L, GHARBI A. Optimal scheduling of a two-stage hybrid flow shop[J]. Mathematical Methods of Operations Research, 2006, 64(1): 107-124. doi: 10.1007/s00186-006-0066-4
    [3] MOCCELLIN J V, NAGANO M S, NETO A R P, et al. Heuristic algorithms for scheduling hybrid flow shops with machine blocking and setup times[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(2): 40. doi: 10.1007/s40430-018-0980-4
    [4] LEI D M, SU B. A multi-class teaching-learning-based optimization for multi-objective distributed hybrid flow shop scheduling[J]. Knowledge-Based Systems, 2023, 263: 110252. doi: 10.1016/j.knosys.2023.110252
    [5] QIN H X, HAN Y Y, ZHANG B, et al. An improved iterated greedy algorithm for the energy-efficient blocking hybrid flow shop scheduling problem[J]. Swarm and Evolutionary Computation, 2022, 69: 100992.
    [6] SCHULZ S, NEUFELD J S, BUSCHER U. A multi-objective iterated local search algorithm for comprehensive energy-aware hybrid flow shop scheduling[J]. Journal of Cleaner Production, 2019, 224: 421-434. doi: 10.1016/j.jclepro.2019.03.155
    [7] 周宁, 张嵩霖, 张晨. 融合粗糙数据推理的离散麻雀搜索算法求解HFSP问题[J]. 北京航空航天大学学报, 2024, 50(2): 398-408.

    ZHOU N, ZHANG S L, ZHANG C. Discrete sparrow search algorithm incorporating rough data-deduction for solving hybrid flow-shop scheduling problems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(2): 398-408(in Chinese).
    [8] WU X L, SUN Y J. A green scheduling algorithm for flexible job shop with energy-saving measures[J]. Journal of Cleaner Production, 2018, 172: 3249-3264. doi: 10.1016/j.jclepro.2017.10.342
    [9] 任彩乐, 张超勇, 孟磊磊, 等. 基于改进候鸟优化算法的混合流水车间调度问题[J]. 计算机集成制造系统, 2019, 25(3): 643-653.

    REN C L, ZHANG C Y, MENG L L, et al. Hybrid flow-shop scheduling problems based on improved migrating birdsoptimization algorithm[J]. Computer Integrated Manufacturing Systems, 2019, 25(3): 643-653(in Chinese).
    [10] 耿凯峰, 叶春明. 带工序跳跃的绿色混合流水车间机器与AGV联合调度[J]. 控制与决策, 2022, 37(10): 2723-2732.

    GENG K F, YE C M. Joint scheduling of machines and AGVs in green hybrid flow shop with missing operations[J]. Control and Decision, 2022, 37(10): 2723-2732(in Chinese).
    [11] SINGH N, DANG Q V, AKCAY A, et al. A matheuristic for AGV scheduling with battery constraints[J]. European Journal of Operational Research, 2022, 298(3): 855-873. doi: 10.1016/j.ejor.2021.08.008
    [12] KARIMI B, NIAKI S T A, NIKNAMFAR A H, et al. Multi-objective optimization of job shops with automated guided vehicles: A non-dominated sorting cuckoo search algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2021, 235(2): 306-328.
    [13] LI W M, HAN D, GAO L, et al. Integrated production and transportation scheduling method in hybrid flow shop[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 12. doi: 10.1186/s10033-022-00683-7
    [14] 胡晓阳, 姚锡凡, 黄鹏, 等. 改进迭代局部搜索算法求解多AGV柔性作业车间调度问题[J]. 计算机集成制造系统, 2022, 28(7): 2198-2212.

    HU X Y, YAO X F, HUANG P, et al. Improved iterative local search algorithm for solving multi-AGV flexible job shop scheduling problem[J]. Computer Integrated Manufacturing Systems, 2022, 28(7): 2198-2212(in Chinese).
    [15] 吴秀丽, 崔琪. 考虑可再生能源的多目标柔性流水车间调度问题[J]. 计算机集成制造系统, 2018, 24(11): 2792-2807.

    WU X L, CUI Q. Multi-objective flexible flow shop scheduling problem with renewable energy[J]. Computer Integrated Manufacturing Systems, 2018, 24(11): 2792-2807(in Chinese).
    [16] 刘建昌, 李飞, 王洪海, 等. 进化高维多目标优化算法研究综述[J]. 控制与决策, 2018, 33(5): 879-887.

    LIU J C, LI F, WANG H H, et al. Survey on evolutionary many-objective optimization algorithms[J]. Control and Decision, 2018, 33(5): 879-887(in Chinese).
    [17] 蔡磊, 李文锋, 罗云. 个性化定制车间生产-物流协同调度框架与算法研究[J]. 机械工程学报, 2022, 58(7): 214-226.

    CAI L, LI W F, LUO Y. Framework and algorithm of customized workshop production-logistics collaborative scheduling[J]. Journal of Mechanical Engineering, 2022, 58(7): 214-226(in Chinese).
    [18] FU B, CHEN L, ZHOU Y T, et al. An improved A* algorithm for the industrial robot path planning with high success rate and short length[J]. Robotics and Autonomous Systems, 2018, 106: 26-37. doi: 10.1016/j.robot.2018.04.007
    [19] ZHU G Y, ZHANG W B. Optimal foraging algorithm for global optimization[J]. Applied Soft Computing, 2017, 51: 294-313.
    [20] JIAN Z Q, ZHU G Y. Affine invariance of meta-heuristic algorithms[J]. Information Sciences, 2021, 576: 37-53. doi: 10.1016/j.ins.2021.06.062
    [21] 朱光宇, 张峥. 基于正向投影灰靶模型的多目标流水车间调度优化[J]. 计算机集成制造系统, 2022, 28(4): 1087-1098.

    ZHU G Y, ZHANG Z. Multi-objective flow-shop scheduling optimization based on positive projection grey target model[J]. Computer Integrated Manufacturing Systems, 2022, 28(4): 1087-1098(in Chinese).
    [22] LI M Q, YANG S X, LIU X H. Pareto or non-Pareto: Bi-criterion evolution in multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 645-665.
    [23] TIAN Y, CHENG R, ZHANG X Y, et al. A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(2): 331-345.
    [24] LIN Q Z, LIU S B, ZHU Q L, et al. Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(1): 32-46.
    [25] YUAN Y, XU H, WANG B, et al. Balancing convergence and diversity in decomposition-based many-objective optimizers[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(2): 180-198. doi: 10.1109/TEVC.2015.2443001
    [26] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
    [27] ZHU G Y, JU X W, ZHANG W B. Multi-objective sequence optimization of PCB component assembly with GA based on the discrete Fréchet distance[J]. International Journal of Production Research, 2018, 56(11): 4017-4034. doi: 10.1080/00207543.2018.1440091
    [28] COELLO C A C, CORTÉS N C. Solving multiobjective optimization problems using an artificial immune system[J]. Genetic Programming and Evolvable Machines, 2005, 6(2): 163-190. doi: 10.1007/s10710-005-6164-x
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  396
  • HTML全文浏览量:  100
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-13
  • 录用日期:  2023-02-24
  • 网络出版日期:  2023-04-11
  • 整期出版日期:  2025-02-28

目录

    /

    返回文章
    返回
    常见问答