留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种面向非合作空间辐射源的自扩展识别方法

陈仕凯 冀金金 荆有波

陈仕凯,冀金金,荆有波. 一种面向非合作空间辐射源的自扩展识别方法[J]. 北京航空航天大学学报,2025,51(2):644-654 doi: 10.13700/j.bh.1001-5965.2023.0024
引用本文: 陈仕凯,冀金金,荆有波. 一种面向非合作空间辐射源的自扩展识别方法[J]. 北京航空航天大学学报,2025,51(2):644-654 doi: 10.13700/j.bh.1001-5965.2023.0024
CHEN S K,JI J J,JING Y B. A self-expanding identification method for non-cooperative space radiation sources[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):644-654 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0024
Citation: CHEN S K,JI J J,JING Y B. A self-expanding identification method for non-cooperative space radiation sources[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):644-654 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0024

一种面向非合作空间辐射源的自扩展识别方法

doi: 10.13700/j.bh.1001-5965.2023.0024
详细信息
    通讯作者:

    E-mail:jingyoubo@ime.ac.cn

  • 中图分类号: TN918;TP309;TN99

A self-expanding identification method for non-cooperative space radiation sources

More Information
  • 摘要:

    关于辐射源射频指纹识别(RFFI)研究通常被视为一个典型的闭集分类问题,但在非合作空间中,辐射源都是事先未知的,所以闭集分类算法很难适用。针对这一问题,本文提出一种面向非合作空间辐射源专家模型自扩展的开集识别方法,可自扩展识别非合作空间中的未知辐射源。首先利用开集方法对已知/未知辐射源样本进行识别,通过样本库构建形成若干独立辐射源识别专家模型;其次提出一种模型解耦式联邦策略,用于辐射源识别专家模型自扩展,使得专家模型能够在线持续学习(CL)空间中的辐射源样本,有效克服了传统辐射源识别模型设计中出现的无法自动学习识别新辐射源样本和易发生灾难性遗忘等问题;最后,采用样本均衡和交织技术提升专家模型对辐射源指纹特征的特异性,从而确保各专家模型快速收敛和保持对特定辐射源识别高泛化能力。实验表明:所提方法在5 dB信噪比(SNR)环境下对辐射源设备的分类准确率达到97.8%以上,27 dB信噪比环境下可达到100%的准确率。

     

  • 图 1  基于IQ不平衡的RRFI系统架构

    Figure 1.  RRIF system architecture based on IQ imbalance

    图 2  16QAM信号经过信噪比为20 dB的高斯白噪声信道的IQ不平衡星座图

    Figure 2.  IQ imbalance constellation of 16QAM signal passing through Gaussian white noise channel with SNR of 20 dB

    图 3  基于专家模型自扩展的开集辐射源识别架构

    Figure 3.  Open set radiation sources identification architecture based on expert model self-expansion

    图 4  专家模型特征提取网络

    Figure 4.  Expert model feature extraction network

    图 5  样本存储流程图

    Figure 5.  Sample storage flow chart

    图 6  2000个已知和未知辐射源样本输入$ {\phi _1} $对应的输出值

    Figure 6.  Output values corresponding to 2 000 known and unknown radiation source samples with $ {\phi _1} $ input

    图 7  2 000个已知和未知辐射源样本输入$ {\phi _2} $对应的输出值

    Figure 7.  Output values corresponding to 2 000 known and unknown radiation source samples with $ {\phi _2} $ input

    图 8  样本库结构及样本均衡

    Figure 8.  Sample library structure and sample balance

    图 9  实验环境

    Figure 9.  Experimental environment

    图 10  4个辐射源在不同信噪比和采样率下的分类准确率

    Figure 10.  Classification accuracy of four radiation sources under different SNRs and sampling rates

    图 11  辐射源的某一种调制信号训练及其他调制信号测试矩阵图

    Figure 11.  Matrix of training of a certain modulation signal of a radiation source and test of other modulation signals

    表  1  5种调制信号闭集和开集测试

    Table  1.   Closed set and open set tests of five modulation signals

    方法 16QAM 64QAM BPSK 8PSK CPFSK
    闭集 1 1 1 1 1
    Softmax+
    Threshold
    0.654 0.632 0.672 0.667 0.583
    Openmax 0.786 0.762 0.774 0.756 0.732
    本文方法 0.992 0.984 0.991 0.982 0.979
    下载: 导出CSV
  • [1] DANEV B, ZANETTI D, CAPKUN S. On physical-layer identification of wireless devices[J]. ACM Computing Surveys, 2012, 45(1): 1-29.
    [2] 俞佳宝, 胡爱群, 朱长明, 等. 无线通信设备的射频指纹提取与识别方法[J]. 密码学报, 2016, 3(5): 433-446.

    YU J B, HU A Q, ZHU C M, et al. RF fingerprinting extraction and identification of wireless communication devices[J]. Journal of Cryptologic Research, 2016, 3(5): 433-446(in Chinese).
    [3] CHOE H C, POOLE C E, YU A M, et al. Novel identification of intercepted signals from unknown radio transmitters[C]//Proceedings Volume 2491, Wavelet Applications II. Orlando: SPIE, 1995: 504-517.
    [4] HALL J, BARBEAU M, KRANAKIS E. Detection of transient in radio frequency fingerprinting using signal phase[C]//Proceedings of the IASTED International Conference on Wireless and Optical Communications. Calgary: ACTA Press, 2003: 13-18.
    [5] ELLIS K J, SERINKEN N. Characteristics of radio transmitter fingerprints[J]. Radio Science, 2001, 36(4): 585-597.
    [6] KIM K, SPOONER C M, AKBAR I, et al. Specific emitter identification for cognitive radio with application to IEEE 802.11[C]//Proceedings of 2008 IEEE Global Telecommunications Conference. Piscataway: IEEE Press, 2008: 1-5.
    [7] 田金鹏, 刘燕平, 刘小娟. 基于瞬态强度的射频指纹识别方法[J]. 电子测量技术, 2016, 39(4): 58-61,65. doi: 10.3969/j.issn.1002-7300.2016.04.014

    TIAN J P, LIU Y P, LIU X J. RF fingerprinting method based on transient intensity[J]. Electronic Measurement Technology, 2016, 39(4): 58-61,65(in Chinese). doi: 10.3969/j.issn.1002-7300.2016.04.014
    [8] 张敏, 罗正华, 黄建刚, 等. 一种基于I/Q失配的辐射源指纹提取方法[J]. 电子学报, 2020, 48(4): 717-722.

    ZHANG M, LUO Z H, HUANG J G, et al. A fingerprint extraction method based on I/Q imbalance[J]. Acta Electronica Sinica, 2020, 48(4): 717-722(in Chinese).
    [9] KENNEDY I O, SCANLON P, MULLANY F J, et al. Radio transmitter fingerprinting: A steady state frequency domain approach[C]//Proceedings of 2008 IEEE 68th Vehicular Technology Conference. Piscataway: IEEE Press, 2008: 1-5.
    [10] BRIK V, BANERJEE S, GRUTESER M, et al. Wireless device identification with radiometric signatures[C]// Proceedings of the 14th ACM International Conference on Mobile Computing and Networking. New York: ACM, 2008: 116-127.
    [11] HUANG G Q, YUAN Y J, WANG X, et al. Specific emitter identification based on nonlinear dynamical characteristics[J]. Canadian Journal of Electrical and Computer Engineering, 2016, 39(1): 34-41. doi: 10.1109/CJECE.2015.2496143
    [12] 韩洁, 张涛, 王欢欢, 等. 基于3D-Hibert能量谱和多尺度分形特征的通信辐射源个体识别[J]. 通信学报, 2017, 38(4): 99-109.

    HAN J, ZHANG T, WANG H H, et al. Communication emitter individual identification based on 3D-Hibert energy spectrum and multi-scale fractal features[J]. Journal on Communications, 2017, 38(4): 99-109(in Chinese).
    [13] 任东方, 张涛, 韩洁, 等. 基于ITD与纹理分析的特定辐射源识别方法[J]. 通信学报, 2017, 38(12): 160-168. doi: 10.11959/j.issn.1000-436x.2017299

    REN D F, ZHANG T, HAN J, et al. Specific emitter identification based on ITD and texture analysis[J]. Journal on Communications, 2017, 38(12): 160-168(in Chinese). doi: 10.11959/j.issn.1000-436x.2017299
    [14] TU Y, UN Y, WANG J, et al. Semi-supervised learning with generative adversarial networks on digital signal modulation classification[J]. Computers Materials & Continua, 2018, 55(2): 243-254.
    [15] 张思成, 林云, 涂涯, 等. 基于轻量级深度神经网络的电磁信号调制识别技术[J]. 通信学报, 2020, 41(11): 12-21. doi: 10.11959/j.issn.1000-436x.2020237

    ZHANG S C, LIN Y, TU Y, et al. Electromagnetic signal modulation recognition technology based on lightweight deep neural network[J]. Journal on Communications, 2020, 41(11): 12-21(in Chinese). doi: 10.11959/j.issn.1000-436x.2020237
    [16] HOU C B, ZHANG X, CHEN X. Electromagnetic signal feature fusion and recognition based on multi-modal deep learning[J]. International Journal of Performability Engineering, 2020, 16(6): 941. doi: 10.23940/ijpe.20.06.p12.941949
    [17] LIN Y, WANG M Y, ZHOU X L, et al. Dynamic spectrum interaction of UAV flight formation communication with priority: A deep reinforcement learning approach [J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(3): 892-903.
    [18] WONG L J, HEADLEY W C, MICHAELS A J. Specific emitter identification using convolutional neural network-based IQ imbalance estimators[J]. IEEE Access, 2019, 7: 33544-33555. doi: 10.1109/ACCESS.2019.2903444
    [19] ZHANG J Q, WOODS R, SANDELL M, et al. Radio frequency fingerprint identification for narrowband systems, modelling and classification[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 3974-3987. doi: 10.1109/TIFS.2021.3088008
    [20] WONG L J, HEADLEY W C, ANDREWS S, et al. Clustering learned CNN features from raw I/Q data for emitter identification[C]//Proceedings of 2018 IEEE Military Communications Conference. Piscataway: IEEE Press, 2018: 26-33.
    [21] LI Y B. Frequency dependent IQ imbalance estimation and compensation[M]//LI Y B. In-Phase and Quadrature Imbalance: Modeling, Estimation, and Compensation. New York: Springer New York, 2013: 49-62.
    [22] INTI D L N S. Time-varying frequency selective IQ imbalance estimation and compensation[D]. Virginia: Virginia Polytechnic Institute and State University, 2017.
    [23] KARL P. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling[M]//KOTZ S, JOHNSON N L. Breakthroughs in Statistics Volume II: Methodology and Distribution. New York: Springer New York, 1992: 11-28.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  227
  • HTML全文浏览量:  84
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-17
  • 录用日期:  2023-03-31
  • 网络出版日期:  2023-07-03
  • 整期出版日期:  2025-02-28

目录

    /

    返回文章
    返回
    常见问答