留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Swarm异构轨道卫星运动学绝对和相对定轨

金彪 李申阳 刘宁宁 赵立谦

金彪,李申阳,刘宁宁,等. Swarm异构轨道卫星运动学绝对和相对定轨[J]. 北京航空航天大学学报,2025,51(2):409-418 doi: 10.13700/j.bh.1001-5965.2023.0039
引用本文: 金彪,李申阳,刘宁宁,等. Swarm异构轨道卫星运动学绝对和相对定轨[J]. 北京航空航天大学学报,2025,51(2):409-418 doi: 10.13700/j.bh.1001-5965.2023.0039
JIN B,LI S Y,LIU N N,et al. Kinematic absolute and relative orbit determination of Swarm satellites with heterogeneous orbits[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):409-418 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0039
Citation: JIN B,LI S Y,LIU N N,et al. Kinematic absolute and relative orbit determination of Swarm satellites with heterogeneous orbits[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):409-418 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0039

Swarm异构轨道卫星运动学绝对和相对定轨

doi: 10.13700/j.bh.1001-5965.2023.0039
基金项目: 国家自然科学基金(42304045)
详细信息
    通讯作者:

    E-mail:lishy@spacestar.com.cn

  • 中图分类号: P228

Kinematic absolute and relative orbit determination of Swarm satellites with heterogeneous orbits

Funds: National Natural Science Foundation of China (42304045)
More Information
  • 摘要:

    精密位置信息是低轨卫星在轨任务成功实施的关键。载波相位模糊度的固定对GPS精密定位、定轨至关重要。利用观测值偏差产品对卫星端硬件偏差进行改正,采用星间单差消除接收机端偏差,实现单接收机模糊度固定。利用Swarm星载实测数据开展运动学绝对和相对精密定轨,分别固定单星模糊度和双差模糊度,研究模糊度固定对运动学定轨精度的影响。结果表明:固定模糊度可明显提升定轨精度。作为参考的简化动力学单星模糊度固定(SD-AR)解轨道卫星激光测距(SLR)残差标准差优于10 mm,相对于浮点解提升了20%。对于运动学绝对定轨,双差模糊度固定(DD-AR)解定轨精度相对浮点解提升26%,SD-AR解定轨精度提升46%。运动学相对定轨中,Swarm-AC编队SD-AR和DD-AR解基线精度相对浮点解提升40%;对于Swarm-AB和Swarm-BC异构轨道编队卫星,选取特定时段观测数据开展相对定轨,相对于浮点解结果,SD-AR解基线精度提升48%,DD-AR解基线精度提升54%。低轨卫星运动学定轨中固定载波相位模糊度可显著提升绝对和相对定轨的精度。

     

  • 图 1  Swarm卫星运动学绝对和相对定轨流程

    Figure 1.  Kinematic absolute and relative orbit determination workflow of Swarm satellites

    图 2  Swarm星座简化动力学SD-AR解轨道SLR残差

    Figure 2.  SLR residuals of reduced dynamic SD-AR orbit of Swarm constellation

    图 3  Swarm-A卫星2016年第185天运动学轨道与参考轨道的差异

    Figure 3.  Difference between kinematic orbit and reference orbit of Swarm-A satellite for day 185 in 2016

    图 4  Swarm单星模糊度固定成功率

    Figure 4.  Swarm single-satellite ambiguity fixing success rate

    图 5  Swarm星座运动学SD-AR解轨道与参考轨道的差异

    Figure 5.  Difference between kinematic SD-AR orbits and reference orbit of Swarm constellation

    图 6  Swarm星座运动学轨道与参考轨道三维差异的RMS值

    Figure 6.  RMS of three dimensional difference between kinematic orbits and reference orbit of Swarm constellation

    图 7  简化动力学SD-AR解和DD-AR解基线差异

    Figure 7.  Baseline difference between reduced dynamic SD-AR solution and DD-AR solution

    图 8  2016年第202天Swarm-AC、Swarm-AB和Swarm-BC基线长度

    Figure 8.  Baseline length of Swarm-AC, Swarm-AB,and Swarm-BC for day 202 in 2016

    图 9  Swarm卫星编队平均基线长度及固定的双差模糊度数量

    Figure 9.  Average baseline length and number of fixed double-difference ambiguity of Swarm satellite formations

    图 10  Swarm卫星编队DD-AR成功率

    Figure 10.  DD-AR success rates of Swarm satellite formations

    图 11  Swarm-AC运动学基线与参考基线的差异

    Figure 11.  Differences between kinematic baseline and reference baseline of Swarm-AC

    图 12  Swarm-AB运动学基线与参考基线的差异

    Figure 12.  Difference between kinematic baseline and reference baseline of Swarm-AB

    图 13  Swarm-BC运动学基线与参考基线的差异

    Figure 13.  Difference between kinematic baseline and reference baseline of Swarm-BC

    表  1  Swarm星载GPS天线、SLR反射器和质心坐标[29]

    Table  1.   Coordinate of Swarm satellite-borne GPS antennas, SLR retroreflectors, and center of mass[29]

    卫星 设备 x/mm y/mm z/mm
    Swarm-A GPS天线 1650.26 0.96 −805.86
    SLR反射器 2419.56 520.75 −31.05
    卫星质心 1956.00 1.00 −334.00
    Swarm-B GPS天线 1651.00 1.76 −805.68
    SLR反射器 2419.56 521.73 −31.29
    卫星质心 1956.00 1.00 −334.00
    Swarm-C GPS天线 1650.18 1.03 −805.55
    SLR反射器 2420.10 521.12 −31.66
    卫星质心 1954.00 1.00 −334.00
    下载: 导出CSV

    表  2  Swarm卫星简化动力学定轨策略

    Table  2.   Reduced dynamic orbit determination strategy for Swarm satellites

    类型 参数 描述
    力模型 地球重力场 EIGEN-6C(130×130)[31]
    地球固体潮和极潮 IERS 2010[32]
    海潮 FES2004(30×30)[33]
    海洋极潮 Desai(30×30)[34]
    N体摄动 JPL’s DE405
    相对论效应 IERS 2010[32]
    太阳光压 宏模型[3]
    大气阻力 宏模型[3],DTM-2013[35]
    数据和产品 定轨弧长/h 24
    GPS观测量 无电离层组合,采样间隔10 s
    截止高度角/(°) 0
    GPS轨道 CODE GPS最终轨道
    GPS钟差/相位偏差 CODE GPS钟差和OSB产品
    GPS天线改正 igs14.atx
    接收天线改正 PCO改正[29]
    相位缠绕 改正[25]
    引力弯曲和相对论改正 IERS 2010[32]
    估计参数 初始状态量 卫星初始位置和速度
    大气阻力系数 每轨道周期估计一个
    太阳辐射压因子 每定轨弧段估计一个
    经验加速度 切向和法向加速度,每轨道周期估计一组
    接收机钟差 每历元估计
    载波模糊度 每跟踪弧段估计一个
    下载: 导出CSV
  • [1] KROES R. Precise relative positioning of formation flying spacecraft using GPS[D]. Delft: Delft University of Technology, 2006.
    [2] MONTENBRUCK O, HACKEL S, JÄGGI A. Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations[J]. Journal of Geodesy, 2018, 92(7): 711-726. doi: 10.1007/s00190-017-1090-2
    [3] MONTENBRUCK O, HACKEL S, VAN DEN IJSSEL J, et al. Reduced dynamic and kinematic precise orbit determination for the Swarm mission from 4 years of GPS tracking[J]. GPS Solutions, 2018, 22(3): 79. doi: 10.1007/s10291-018-0746-6
    [4] MONTENBRUCK O, HACKEL S, WERMUTH M, et al. Sentinel-6A precise orbit determination using a combined GPS/Galileo receiver[J]. Journal of Geodesy, 2021, 95(9): 109. doi: 10.1007/s00190-021-01563-z
    [5] JIN B, LI Y Q, JIANG K C, et al. GRACE-FO antenna phase center modeling and precise orbit determination with single receiver ambiguity resolution[J]. Remote Sensing, 2021, 13(21): 4204. doi: 10.3390/rs13214204
    [6] KROES R, MONTENBRUCK O, BERTIGER W, et al. Precise GRACE baseline determination using GPS[J]. GPS Solutions, 2005, 9(1): 21-31. doi: 10.1007/s10291-004-0123-5
    [7] JÄGGI A, HUGENTOBLER U, BOCK H, et al. Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data[J]. Advances in Space Research, 2007, 39(10): 1612-1619. doi: 10.1016/j.asr.2007.03.012
    [8] ZHAO Q L, HU Z G, GUO J, et al. Precise relative orbit determination of twin GRACE satellites[J]. Geo-spatial Information Science, 2010, 13(3): 221-225. doi: 10.1007/s11806-010-0362-2
    [9] GE M, GENDT G, ROTHACHER M, et al. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations[J]. Journal of Geodesy, 2008, 82(7): 389-399. doi: 10.1007/s00190-007-0187-4
    [10] LAURICHESSE D, MERCIER F, BERTHIAS J P, et al. Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination[J]. Navigation, 2009, 56(2): 135-149. doi: 10.1002/j.2161-4296.2009.tb01750.x
    [11] COLLINS P, BISNATH S, LAHAYE F, et al. Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing[J]. Navigation, 2010, 57(2): 123-135. doi: 10.1002/j.2161-4296.2010.tb01772.x
    [12] BERTIGER W, DESAI S D, HAINES B, et al. Single receiver phase ambiguity resolution with GPS data[J]. Journal of Geodesy, 2010, 84(5): 327-337. doi: 10.1007/s00190-010-0371-9
    [13] LOYER S, PEROSANZ F, MERCIER F, et al. Zero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis Center[J]. Journal of Geodesy, 2012, 86(11): 991-1003. doi: 10.1007/s00190-012-0559-2
    [14] 张小红, 李盼, 左翔. 固定模糊度的精密单点定位几何定轨方法及结果分析[J]. 武汉大学学报(信息科学版), 2013, 38(9): 1009-1013.

    ZHANG X H, LI P, ZUO X. Kinematic precise orbit determination based on ambiguity-fixed PPP[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1009-1013(in Chinese).
    [15] FRIIS-CHRISTENSEN E, LÜHR H, KNUDSEN D, et al. Swarm an Earth observation mission investigating geospace[J]. Advances in Space Research, 2008, 41(1): 210-216.
    [16] SIEG D, DIEKMANN F. Options for the further orbit evolution of the Swarm mission[C]//Proceedings of the Living Planet Symposium. The Netherlands: European Space Research and Technology Centre, 2016.
    [17] ZANGERL F, GRIESAUER F, SUST M, et al. SWARM GPS precise orbit determination receiver initial in-orbit performance evaluation[C]//Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation. Washington, D. C.: Institute of Navigation, 2014: 1459-1468.
    [18] VAN DEN IJSSEL J, ENCARNACÃO J A, DOORNBOS E, et al. Precise science orbits for the Swarm satellite constellation[J]. Advances in Space Research, 2015, 56(6): 1042-1055. doi: 10.1016/j.asr.2015.06.002
    [19] JÄGGI A, DAHLE C, ARNOLD D, et al. Swarm kinematic orbits and gravity fields from 18 months of GPS data[J]. Advances in Space Research, 2016, 57(1): 218-233. doi: 10.1016/j.asr.2015.10.035
    [20] ALLENDE-ALBA G, MONTENBRUCK O, JÄGGI A, et al. Reduced-dynamic and kinematic baseline determination for the Swarm mission[J]. GPS Solutions, 2017, 21(3): 1275-1284. doi: 10.1007/s10291-017-0611-z
    [21] MAO X, VISSER P N A M, VAN DEN IJSSEL J. High-dynamic baseline determination for the Swarm constellation[J]. Aerospace Science and Technology, 2019, 88: 329-339. doi: 10.1016/j.ast.2019.03.031
    [22] 张兵兵, 聂琳娟, 吴汤婷, 等. SWARM卫星简化动力学厘米级精密定轨[J]. 测绘学报, 2016, 45(11): 1278-1284. doi: 10.11947/j.AGCS.2016.20160284

    ZHANG B B, NIE L J, WU T T, et al. Centimeter precise orbit determination for SWARM satellite via reduced-dynamic method[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(11): 1278-1284(in Chinese). doi: 10.11947/j.AGCS.2016.20160284
    [23] 张兵兵, 牛继强, 王正涛, 等. Swarm系列卫星非差运动学厘米级精密定轨[J]. 测绘学报, 2021, 50(1): 27-36. doi: 10.11947/j.AGCS.2021.20190165

    ZHANG B B, NIU J Q, WANG Z T, et al. Centimeter precise orbit determination for the Swarm satellites via undifferenced kinematic method[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1): 27-36(in Chinese). doi: 10.11947/j.AGCS.2021.20190165
    [24] BLEWITT G. Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B8): 10187-10203. doi: 10.1029/JB094iB08p10187
    [25] WU J T, WU S C, HAJJ G A, et al. Effects of antenna orientation on GPS carrier phase[J]. Advances in the Astronautical Sciences, 1992, 76(2): 1647-1660.
    [26] MELBOURNE W. The case for ranging in GPS based geodetic systems[C]//Proceedings of the 1st International Symposium on Precise Positioning with the Global Positioning System. Washington, D. C.: NOAA, 1985: 373-386.
    [27] WÜBBENA G. Software developments for geodetic positioning with GPS using TI 4100 code and carrier measurements[C]//Proceedings of the 1st International Symposium on Precise Positioning with the Global Positioning System. Washington, D. C. : NOAA, 1985: 403-412.
    [28] MAO X, VISSER P N A M, VAN DEN IJSSEL J. The impact of GPS receiver modifications and ionospheric activity on Swarm baseline determination[J]. Acta Astronautica, 2018, 146: 399-408. doi: 10.1016/j.actaastro.2018.03.009
    [29] SIEMES C. Swarm instrument positions related to GPS receiver data processing: ESA-EOPSM-SWRM-TN-3559[R]. The Netherlands: European Space Research and Technology Centre, 2019.
    [30] LIU J N, GE M R. PANDA software and its preliminary result of positioning and orbit determination[J]. Wuhan University Journal of Natural Sciences, 2003, 8(2): 603-609. doi: 10.1007/BF02899825
    [31] SHAKO R, FÖRSTE C, ABRIKOSOV O, et al. EIGEN-6C: A high-resolution global gravity combination model including GOCE data[M]. Berlin: Springer, 2014: 155-161.
    [32] PETIT G, LUZUM B. IERS conventions 2010, IERS technical note: No. 36[R]. Frankfurt: Federal Agency for Cartography and Geodesy, 2010.
    [33] LYARD F, LEFEVRE F, LETELLIER T, et al. Modelling the global ocean tides: Modern insights from FES2004[J]. Ocean Dynamics, 2006, 56(5): 394-415.
    [34] DESAI S D. Observing the pole tide with satellite altimetry[J]. Journal of Geophysical Research: Oceans, 2002, 107: 1-13.
    [35] BRUINSMA S. The DTM-2013 thermosphere model[J]. Journal of Space Weather and Space Climate, 2015, 5: A1. doi: 10.1051/swsc/2015001
    [36] PEARLMAN M R, DEGNAN J J, BOSWORTH J M. The international laser ranging service[J]. Advances in Space Research, 2002, 30(2): 135-143. doi: 10.1016/S0273-1177(02)00277-6
    [37] GUO X, GENG J H, CHEN X Y, et al. Enhanced orbit determination for formation-flying satellites through integrated single-and double-difference GPS ambiguity resolution[J]. GPS Solutions, 2019, 24(1): 1-14.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  308
  • HTML全文浏览量:  96
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-08
  • 录用日期:  2023-04-21
  • 网络出版日期:  2023-05-12
  • 整期出版日期:  2025-02-28

目录

    /

    返回文章
    返回
    常见问答