Kinematic absolute and relative orbit determination of Swarm satellites with heterogeneous orbits
-
摘要:
精密位置信息是低轨卫星在轨任务成功实施的关键。载波相位模糊度的固定对GPS精密定位、定轨至关重要。利用观测值偏差产品对卫星端硬件偏差进行改正,采用星间单差消除接收机端偏差,实现单接收机模糊度固定。利用Swarm星载实测数据开展运动学绝对和相对精密定轨,分别固定单星模糊度和双差模糊度,研究模糊度固定对运动学定轨精度的影响。结果表明:固定模糊度可明显提升定轨精度。作为参考的简化动力学单星模糊度固定(SD-AR)解轨道卫星激光测距(SLR)残差标准差优于10 mm,相对于浮点解提升了20%。对于运动学绝对定轨,双差模糊度固定(DD-AR)解定轨精度相对浮点解提升26%,SD-AR解定轨精度提升46%。运动学相对定轨中,Swarm-AC编队SD-AR和DD-AR解基线精度相对浮点解提升40%;对于Swarm-AB和Swarm-BC异构轨道编队卫星,选取特定时段观测数据开展相对定轨,相对于浮点解结果,SD-AR解基线精度提升48%,DD-AR解基线精度提升54%。低轨卫星运动学定轨中固定载波相位模糊度可显著提升绝对和相对定轨的精度。
Abstract:Precise position information is the key to guaranteeing the successful implementation of low-earth-orbit satellite missions. The fixing of carrier phase ambiguities is important for the precise positioning and precise orbit determination of the GPS. The satellite-end hardware bias was corrected by using the observation specific bias product, and the receiver-end bias was eliminated by using the inter-satellite single difference to fix the single receiver ambiguity. Swarm satellite-borne measured data was used to carry out kinematic absolute and relative orbit determination, and the single-satellite ambiguity and double-difference ambiguity were fixed respectively to research the influence of fixing ambiguities on kinematic orbit determination accuracy. The results show that fixing ambiguities can significantly improve orbit determination accuracy. The standard deviation of the satellite laser ranging (SLR) residuals for the reduced dynamic single difference ambiguity resolution (SD-AR) orbit as a reference is better than 10 mm, which is improved by 20% compared with that of the floating solution. For kinematic absolute orbit determination, the orbit determination accuracy of the double difference ambiguity resolution (DD-AR) is improved by 26% compared with that of the floating solution, and the accuracy of the SD-AR is improved by 46%. For kinematic relative orbit determination, the baseline accuracy of the SD-AR and DD-AR of the Swarm-AC formation is improved by 40% compared with that of the floating solution. For the Swarm-AB and Swarm-BC formation satellites on heterogeneous orbits, observation data of specific periods are selected for relative orbit determination. Compared with the floating solution results, the baseline accuracy of the SD-AR is improved by 48%, and the accuracy of the DD-AR is improved by 54%. Fixing the carrier phase ambiguity in the kinematic orbit determination of low-earth-orbit satellites can significantly improve the accuracy of absolute and relative orbit determination.
-
表 1 Swarm星载GPS天线、SLR反射器和质心坐标[29]
Table 1. Coordinate of Swarm satellite-borne GPS antennas, SLR retroreflectors, and center of mass[29]
卫星 设备 x/mm y/mm z/mm Swarm-A GPS天线 − 1650.26 0.96 −805.86 SLR反射器 − 2419.56 520.75 −31.05 卫星质心 − 1956.00 1.00 −334.00 Swarm-B GPS天线 − 1651.00 1.76 −805.68 SLR反射器 − 2419.56 521.73 −31.29 卫星质心 − 1956.00 1.00 −334.00 Swarm-C GPS天线 − 1650.18 1.03 −805.55 SLR反射器 − 2420.10 521.12 −31.66 卫星质心 − 1954.00 1.00 −334.00 表 2 Swarm卫星简化动力学定轨策略
Table 2. Reduced dynamic orbit determination strategy for Swarm satellites
类型 参数 描述 力模型 地球重力场 EIGEN-6C(130×130)[31] 地球固体潮和极潮 IERS 2010[32] 海潮 FES2004(30×30)[33] 海洋极潮 Desai(30×30)[34] N体摄动 JPL’s DE405 相对论效应 IERS 2010[32] 太阳光压 宏模型[3] 大气阻力 宏模型[3],DTM-2013[35] 数据和产品 定轨弧长/h 24 GPS观测量 无电离层组合,采样间隔10 s 截止高度角/(°) 0 GPS轨道 CODE GPS最终轨道 GPS钟差/相位偏差 CODE GPS钟差和OSB产品 GPS天线改正 igs14.atx 接收天线改正 PCO改正[29] 相位缠绕 改正[25] 引力弯曲和相对论改正 IERS 2010[32] 估计参数 初始状态量 卫星初始位置和速度 大气阻力系数 每轨道周期估计一个 太阳辐射压因子 每定轨弧段估计一个 经验加速度 切向和法向加速度,每轨道周期估计一组 接收机钟差 每历元估计 载波模糊度 每跟踪弧段估计一个 -
[1] KROES R. Precise relative positioning of formation flying spacecraft using GPS[D]. Delft: Delft University of Technology, 2006. [2] MONTENBRUCK O, HACKEL S, JÄGGI A. Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations[J]. Journal of Geodesy, 2018, 92(7): 711-726. doi: 10.1007/s00190-017-1090-2 [3] MONTENBRUCK O, HACKEL S, VAN DEN IJSSEL J, et al. Reduced dynamic and kinematic precise orbit determination for the Swarm mission from 4 years of GPS tracking[J]. GPS Solutions, 2018, 22(3): 79. doi: 10.1007/s10291-018-0746-6 [4] MONTENBRUCK O, HACKEL S, WERMUTH M, et al. Sentinel-6A precise orbit determination using a combined GPS/Galileo receiver[J]. Journal of Geodesy, 2021, 95(9): 109. doi: 10.1007/s00190-021-01563-z [5] JIN B, LI Y Q, JIANG K C, et al. GRACE-FO antenna phase center modeling and precise orbit determination with single receiver ambiguity resolution[J]. Remote Sensing, 2021, 13(21): 4204. doi: 10.3390/rs13214204 [6] KROES R, MONTENBRUCK O, BERTIGER W, et al. Precise GRACE baseline determination using GPS[J]. GPS Solutions, 2005, 9(1): 21-31. doi: 10.1007/s10291-004-0123-5 [7] JÄGGI A, HUGENTOBLER U, BOCK H, et al. Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data[J]. Advances in Space Research, 2007, 39(10): 1612-1619. doi: 10.1016/j.asr.2007.03.012 [8] ZHAO Q L, HU Z G, GUO J, et al. Precise relative orbit determination of twin GRACE satellites[J]. Geo-spatial Information Science, 2010, 13(3): 221-225. doi: 10.1007/s11806-010-0362-2 [9] GE M, GENDT G, ROTHACHER M, et al. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations[J]. Journal of Geodesy, 2008, 82(7): 389-399. doi: 10.1007/s00190-007-0187-4 [10] LAURICHESSE D, MERCIER F, BERTHIAS J P, et al. Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination[J]. Navigation, 2009, 56(2): 135-149. doi: 10.1002/j.2161-4296.2009.tb01750.x [11] COLLINS P, BISNATH S, LAHAYE F, et al. Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing[J]. Navigation, 2010, 57(2): 123-135. doi: 10.1002/j.2161-4296.2010.tb01772.x [12] BERTIGER W, DESAI S D, HAINES B, et al. Single receiver phase ambiguity resolution with GPS data[J]. Journal of Geodesy, 2010, 84(5): 327-337. doi: 10.1007/s00190-010-0371-9 [13] LOYER S, PEROSANZ F, MERCIER F, et al. Zero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis Center[J]. Journal of Geodesy, 2012, 86(11): 991-1003. doi: 10.1007/s00190-012-0559-2 [14] 张小红, 李盼, 左翔. 固定模糊度的精密单点定位几何定轨方法及结果分析[J]. 武汉大学学报(信息科学版), 2013, 38(9): 1009-1013.ZHANG X H, LI P, ZUO X. Kinematic precise orbit determination based on ambiguity-fixed PPP[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1009-1013(in Chinese). [15] FRIIS-CHRISTENSEN E, LÜHR H, KNUDSEN D, et al. Swarm an Earth observation mission investigating geospace[J]. Advances in Space Research, 2008, 41(1): 210-216. [16] SIEG D, DIEKMANN F. Options for the further orbit evolution of the Swarm mission[C]//Proceedings of the Living Planet Symposium. The Netherlands: European Space Research and Technology Centre, 2016. [17] ZANGERL F, GRIESAUER F, SUST M, et al. SWARM GPS precise orbit determination receiver initial in-orbit performance evaluation[C]//Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation. Washington, D. C.: Institute of Navigation, 2014: 1459-1468. [18] VAN DEN IJSSEL J, ENCARNACÃO J A, DOORNBOS E, et al. Precise science orbits for the Swarm satellite constellation[J]. Advances in Space Research, 2015, 56(6): 1042-1055. doi: 10.1016/j.asr.2015.06.002 [19] JÄGGI A, DAHLE C, ARNOLD D, et al. Swarm kinematic orbits and gravity fields from 18 months of GPS data[J]. Advances in Space Research, 2016, 57(1): 218-233. doi: 10.1016/j.asr.2015.10.035 [20] ALLENDE-ALBA G, MONTENBRUCK O, JÄGGI A, et al. Reduced-dynamic and kinematic baseline determination for the Swarm mission[J]. GPS Solutions, 2017, 21(3): 1275-1284. doi: 10.1007/s10291-017-0611-z [21] MAO X, VISSER P N A M, VAN DEN IJSSEL J. High-dynamic baseline determination for the Swarm constellation[J]. Aerospace Science and Technology, 2019, 88: 329-339. doi: 10.1016/j.ast.2019.03.031 [22] 张兵兵, 聂琳娟, 吴汤婷, 等. SWARM卫星简化动力学厘米级精密定轨[J]. 测绘学报, 2016, 45(11): 1278-1284. doi: 10.11947/j.AGCS.2016.20160284ZHANG B B, NIE L J, WU T T, et al. Centimeter precise orbit determination for SWARM satellite via reduced-dynamic method[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(11): 1278-1284(in Chinese). doi: 10.11947/j.AGCS.2016.20160284 [23] 张兵兵, 牛继强, 王正涛, 等. Swarm系列卫星非差运动学厘米级精密定轨[J]. 测绘学报, 2021, 50(1): 27-36. doi: 10.11947/j.AGCS.2021.20190165ZHANG B B, NIU J Q, WANG Z T, et al. Centimeter precise orbit determination for the Swarm satellites via undifferenced kinematic method[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1): 27-36(in Chinese). doi: 10.11947/j.AGCS.2021.20190165 [24] BLEWITT G. Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B8): 10187-10203. doi: 10.1029/JB094iB08p10187 [25] WU J T, WU S C, HAJJ G A, et al. Effects of antenna orientation on GPS carrier phase[J]. Advances in the Astronautical Sciences, 1992, 76(2): 1647-1660. [26] MELBOURNE W. The case for ranging in GPS based geodetic systems[C]//Proceedings of the 1st International Symposium on Precise Positioning with the Global Positioning System. Washington, D. C.: NOAA, 1985: 373-386. [27] WÜBBENA G. Software developments for geodetic positioning with GPS using TI 4100 code and carrier measurements[C]//Proceedings of the 1st International Symposium on Precise Positioning with the Global Positioning System. Washington, D. C. : NOAA, 1985: 403-412. [28] MAO X, VISSER P N A M, VAN DEN IJSSEL J. The impact of GPS receiver modifications and ionospheric activity on Swarm baseline determination[J]. Acta Astronautica, 2018, 146: 399-408. doi: 10.1016/j.actaastro.2018.03.009 [29] SIEMES C. Swarm instrument positions related to GPS receiver data processing: ESA-EOPSM-SWRM-TN-3559[R]. The Netherlands: European Space Research and Technology Centre, 2019. [30] LIU J N, GE M R. PANDA software and its preliminary result of positioning and orbit determination[J]. Wuhan University Journal of Natural Sciences, 2003, 8(2): 603-609. doi: 10.1007/BF02899825 [31] SHAKO R, FÖRSTE C, ABRIKOSOV O, et al. EIGEN-6C: A high-resolution global gravity combination model including GOCE data[M]. Berlin: Springer, 2014: 155-161. [32] PETIT G, LUZUM B. IERS conventions 2010, IERS technical note: No. 36[R]. Frankfurt: Federal Agency for Cartography and Geodesy, 2010. [33] LYARD F, LEFEVRE F, LETELLIER T, et al. Modelling the global ocean tides: Modern insights from FES2004[J]. Ocean Dynamics, 2006, 56(5): 394-415. [34] DESAI S D. Observing the pole tide with satellite altimetry[J]. Journal of Geophysical Research: Oceans, 2002, 107: 1-13. [35] BRUINSMA S. The DTM-2013 thermosphere model[J]. Journal of Space Weather and Space Climate, 2015, 5: A1. doi: 10.1051/swsc/2015001 [36] PEARLMAN M R, DEGNAN J J, BOSWORTH J M. The international laser ranging service[J]. Advances in Space Research, 2002, 30(2): 135-143. doi: 10.1016/S0273-1177(02)00277-6 [37] GUO X, GENG J H, CHEN X Y, et al. Enhanced orbit determination for formation-flying satellites through integrated single-and double-difference GPS ambiguity resolution[J]. GPS Solutions, 2019, 24(1): 1-14. -