-
摘要:
为提升复杂电磁环境战场中调频无线电引信的抗干扰能力,基于稀疏表示理论,将稀疏表示系数重构用于调频无线电的目标和干扰信号分类识别,提出一种目标信号和扫频式干扰信号的分类识别方法,解决了调频无线电引信的抗干扰能力不足的问题。采集了模拟目标及干扰信号作用于无线电引信的检波端输出信号,构建了目标信号过完备字典和干扰信号过完备字典,分别将测试信号在2类字典上进行稀疏分解并重构,依据重构误差对测试样本类别进行识别。结果表明:基于稀疏表示的调频无线电引信目标和干扰信号分类识别方法,可以对目标和干扰信号进行有效的识别,同时能够满足较低的虚警概率。研究成果对于调频无线电引信在复杂电磁环境中的抗干扰具有重要的借鉴意义。
Abstract:To enhance the frequency modulation radio fuze’s ability to prevent interference in the complex electromagnetic environment, a method of classifying and identifying the target and interference signals is suggested. This method is based on the sparse representation theory and uses the sparse representation coefficient reconstruction. The goal is to address the issue of the frequency modulation radio fuze’s insufficient ability to prevent interference. The output signals of the detector end of the radio fuze were collected, and the overcomplete dictionary of the target signal and the overcomplete dictionary of the interference signal were constructed. The test signals underwent sparse decomposition and reconstruction on both types of dictionaries. Based on the reconstruction errors, the test sample categories were determined. The results show that the classification and recognition method of frequency modulation radio fuze targets and interference signals based on sparse representation can effectively recognize targets and interference signals, and at the same time meet the lower false alarm probability. The research results have important reference significance for frequency modulation radio fuze’s anti-jamming and effective attack in complex electromagnetic environments.
-
表 1 稀疏表示分类识别测试结果
Table 1. Sparse representation classification recognition test results
目标识别准确率$ {A_{\mathrm{t}}} $/% 干扰识别准确率$ {A_{\mathrm{j}}} $/% 被干扰概率$ {D_{\mathrm{r}}} $/% 97.60 97.54 2.46 表 2 方法实时性对比
Table 2. Real-time comparison of algorithms
方法 平均一次计算用时/ms 本文方法 0.76 文献[13]方法 8.2 -
[1] 崔占忠, 宋世和, 徐立新. 近炸引信原理[M]. 2版. 北京: 北京理工大学出版社, 2005.CUI Z Z, SONG S H, XU L X. Principle of proximity fuze[M]. 2nd ed. Beijing: Beijing Insititute of Technology Press, 2005(in Chinese). [2] 赵惠昌. 无线电引信设计原理与方法[M]. 北京: 国防工业出版社, 2012: 42-90.ZHAO H C. Fundamentals and methodology of radio fuze[M]. Beijing: National Defense Industry Press, 2012: 42-90(in Chinese). [3] 孔志杰, 郝新红, 栗苹, 等. 调频引信谐波时序检测抗干扰方法及实现 [J]. 北京航空航天大学学报, 2018, 44(3): 549-555.KONG Z J, HAO X H, LI P, et al. Harmonic timing sequence detection anti-jamming method and its implementation for FM fuze[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 549-555(in Chinese). [4] RAO G N, SASTRY C S, DIVAKAR N. Trends in electronic warfare[J]. IETE Technical Review, 2003, 20: 139-150. doi: 10.1080/02564602.2003.11417078 [5] 李泽, 栗苹, 郝新红, 等. 脉冲多普勒引信抗有源噪声干扰性能研究[J]. 兵工学报, 2015, 36(6): 1001-1008. doi: 10.3969/j.issn.1000-1093.2015.06.006LI Z, LI P, HAO X H, et al. Anti-active noise jamming performance of pulse Doppler fuze[J]. Acta Armamentarii, 2015, 36(6): 1001-1008(in Chinese). doi: 10.3969/j.issn.1000-1093.2015.06.006 [6] 黄莹, 郝新红, 孔志杰, 等. 基于熵特征的调频引信与干扰信号识别[J]. 兵工学报, 2017, 38(2): 254-260. doi: 10.3969/j.issn.1000-1093.2017.02.007HUANG Y, HAO X H, KONG Z J, et al. Recognition of target and jamming signal for FM fuze based on entropy features[J]. Acta Armamentarii, 2017, 38(2): 254-260(in Chinese). doi: 10.3969/j.issn.1000-1093.2017.02.007 [7] 陈齐乐, 郝新红, 闫晓鹏, 等. 基于谐波系数幅值平均的复合调制引信抗扫频式干扰方法[J]. 北京航空航天大学学报, 2020, 46(7): 1317-1324.CHEN Q L, HAO X H, YAN X P, et al. Anti sweep jamming method of hybrid modulation fuze based on harmonic coefficient amplitude averaging[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1317-1324(in Chinese). [8] 于洪海, 闫晓鹏, 贾瑞丽, 等. M序列伪码调相脉冲多普勒引信抗干扰性能研究[J]. 兵工学报, 2020, 41(3): 417-425. doi: 10.3969/j.issn.1000-1093.2020.03.001YU H H, YAN X P, JIA R L, et al. Research on anti-jamming performance of M-sequency pseudo-random code phase modulation pulse Doppler fuze[J]. Acta Armamentarii, 2020, 41(3): 417-425(in Chinese). doi: 10.3969/j.issn.1000-1093.2020.03.001 [9] KONG Z J, LI P, YAN X P, et al. Anti-sweep jamming design and implementation using multi-channel harmonic timing sequence detection for short-range FMCW proximity sensors[J]. Sensors, 2017, 17(9): 2042. doi: 10.3390/s17092042 [10] 单剑锋, 翟波. 基于小波变换的无线电引信目标识别研究[J]. 弹箭与制导学报, 2009, 29(6): 288-290. doi: 10.3969/j.issn.1673-9728.2009.06.080SHAN J F, ZHAI B. Wavelet based target detection for radio fuze signal[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(6): 288-290(in Chinese). doi: 10.3969/j.issn.1673-9728.2009.06.080 [11] DONOHO D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. [12] 袁伟. 基于一维距离像稀疏表达的无源假目标识别[J]. 电讯技术, 2018, 58(7): 798-804. doi: 10.3969/j.issn.1001-893x.2018.07.009YUAN W. Passive fake target recognition based on one-dimensional distance image sparse representation[J]. Telecommunication Engineering, 2018, 58(7): 798-804(in Chinese). doi: 10.3969/j.issn.1001-893x.2018.07.009 [13] 周红平, 马明辉, 吴若无, 等. 基于稀疏表示分类的雷达欺骗干扰识别方法[J]. 系统工程与电子技术, 2022, 44(9): 2791-2799. doi: 10.12305/j.issn.1001-506X.2022.09.12ZHOU H P, MA M H, WU R W, et al. Deception jamming recognition of radar based on sparse representation classification[J]. System Engineering and Electronics, 2022, 44(9): 2791-2799(in Chinese). doi: 10.12305/j.issn.1001-506X.2022.09.12 [14] 段沛沛, 李辉. 压缩感知稀疏表示在雷达目标识别中的应用[J]. 电讯技术, 2016, 56(1): 20-25. doi: 10.3969/j.issn.1001-893x.2016.01.004DUAN P P, LI H. Application of compressed sensing and sparse representation in radar target recognition[J]. Telecommunication Engineering, 2016, 56(1): 20-25(in Chinese). doi: 10.3969/j.issn.1001-893x.2016.01.004 [15] AHARON M, ELAD M, BRUCKSTEIN A M. The K-SVD: An algorithm for designing of over-complete dictionaries for sparse representation[J]. IEEE Transaction on Signal Processing, 2006, 54(11): 4311-4322. doi: 10.1109/TSP.2006.881199 [16] 余发军, 周凤星, 严保康. 基于稀疏表示的轴承早起故障特征提取[J]. 北京理工大学学报, 2016, 36(4): 376-398.YU F J, ZHOU F X, YAN B K. Initial fault feature extraction of bearing based on sparse representation[J]. Transaction of Beijing Institute of Technology, 2016, 36(4): 376-398(in Chinese). [17] 孟宗, 郜文清, 潘作舟, 等. G-KSVD字典及其在滚动轴承故障信号稀疏表示中的应用[J]. 中国机械工程, 2021, 32(15): 1776-1785. doi: 10.3969/j.issn.1004-132X.2021.15.002MENG Z, GAO W Q, PAN Z Z, et al. G-KSVD dictionary and its applications in sparse representation of rolling bearing fault signals[J]. China Mechanical Engineering, 2021, 32(15): 1776-1785 (in Chinese). doi: 10.3969/j.issn.1004-132X.2021.15.002 [18] 王红, 孙同晶, 刘桐. 基于字典学习的主动声呐目标分类方法[J]. 声学技术, 2020, 39(5): 552-558.WANG H, SUN T J, LIU T. Active sonar target classification based on dictionary learning[J]. Technical Acoustics, 2020, 39(5): 552-558(in Chinese). [19] 原慧, 王春阳, 安磊, 等. 基于信号重构的频谱弥散干扰抑制方法[J]. 系统工程与电子技术, 2017, 39(5): 960-967. doi: 10.3969/j.issn.1001-506X.2017.05.02YUAN H, WANG C Y, AN L, et al. Smeared spectrum jamming suppression method based on signal reconstruction[J]. Systems Engineering and Electronics, 2017, 39(5): 960-967(in Chinese). doi: 10.3969/j.issn.1001-506X.2017.05.02 -