Multi-ground station system-based link allocation strategy for satellite constellation
-
摘要:
针对大规模卫星星座开展通信资源的研究,随着多个低轨星座的成功构建,标志着大规模卫星星座的商用化已经开始。这类大规模卫星星座可以同时兼顾低时延、广覆盖和大流量的优点。高效利用地面站资源成为大规模卫星星座研究的技术瓶颈,针对该问题,提出多星及多站拓扑结构,并结合链路时间资源,提出星地链路时间模型。同时,提出时隙插入策略,以多地面站的整体链路效能作为优化目标,得到多星及多站链路时间表。通过与随机策略和贪婪策略的性能对比,验证了所提策略的可行性和优越性。
Abstract:Aiming at the research of large-scale satellite constellation, the research content of communication resources is put forward. With the successful construction of several low-orbit constellations, the commercialization of large-scale satellite constellations has begun. This kind of large-scale satellite constellation can simultaneously take into account the advantages of low delay, wide coverage and large traffic. In order to make efficient use of earth station resources, it has become the technical bottleneck of large-scale satellite constellation research. The multi-star and multi-station topology is proposed to better focus on this problem. Combined with the link time resources, a satellite-earth link time model is proposed. On this basis, the time-slot insertion strategy is proposed, and the multi-star and multi-station link schedules are obtained by taking the overall link efficiency of multi-ground stations as the optimization objective. The feasibility and superiority of the proposed strategy are verified by comparing the performance with random strategy and greedy strategy.
-
Key words:
- satellite constellation /
- ground station /
- resource allocation /
- network topology /
- communication link
-
表 1 两大星座轨道拓扑
Table 1. Orbit topology of two constellations
星座 组号 轨道高度/km 轨道数量 卫星总数 轨道倾角/(°) Starlink S.1 550 22 1584 53 S.2 570 20 720 70 S.3 540 22 1584 53.2 S.4 560 58 348 97.6 S.5 560 42 172 97.6 Oneweb O.1 1200 12 576 87.8 表 2 多地面站部署分布
Table 2. Deployment of multiple ground stations
编号 纬度/(°) 经度/(°) 编号 纬度/(°) 经度/(°) 1 20 110 21 35 120 2 25 100 22 40 70 3 25 105 23 40 75 4 25 115 24 40 80 5 30 85 25 40 85 6 30 90 26 40 90 7 30 95 27 40 95 8 30 100 28 40 100 9 30 105 29 40 105 10 30 110 30 40 110 11 30 115 31 40 115 12 30 120 32 40 120 13 35 80 33 45 85 14 35 85 34 45 90 15 35 90 35 45 115 16 35 95 36 45 120 17 35 100 37 45 125 18 35 105 38 45 130 19 35 110 39 50 120 20 35 115 40 50 125 -
[1] 吴树范, 王伟, 温济帆, 等. 低轨互联网星座发展研究[J]. 北京航空航天大学学报, 2024, 50(1): 1-11.WU S F, WANG W, WEN J F, et al. Review on development of LEO Internet constellation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(1): 1-11(in Chinese). [2] JIANG Y F, WU S F, MO Q K. A compass time-space model-based virtual IP routing scheme for NTSN satellite constellations[J]. Chinese Journal of Aeronautics, 2023, 36(9): 280-288. doi: 10.1016/j.cja.2023.02.022 [3] JIANG Y F, WU S F, MO Q K, et al. An energy sensitive and congestion balance routing scheme for non-terrestrial-satellite-network (NTSN)[J]. Remote Sensing, 2023, 15(3): 585. doi: 10.3390/rs15030585 [4] HUANG Y X, WU S F, KANG Z Y, et al. Reinforcement learning based dynamic distributed routing scheme for mega LEO satellite networks[J]. Chinese Journal of Aeronautics, 2023, 36(2): 284-291. doi: 10.1016/j.cja.2022.06.021 [5] TAKAHASHI M, KAWAMOTO Y, KATO N, et al. DBF-based fusion control of transmit power and beam directivity for flexible resource allocation in HTS communication system toward B5G[J]. IEEE Transactions on Wireless Communications, 2021, 21(1): 95-105. [6] JIANG Y F, HE W X, LIU W Z, et al. A B5G non-terrestrial-network (NTN) and hybird constellation based data collection system (DCS)[J]. Aerospace, 2023, 10(4): 366. doi: 10.3390/aerospace10040366 [7] 徐可笛, 徐兆斌, 郭晓旭, 等. 大规模卫星星座组网的码分多址干扰分析[J]. 北京航空航天大学学报, 2024, 50(9): 2885-2892.XU K D, XU Z B, GUO X X, et al. Analysis of CDMA interference in large-scale satellite constellation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(9): 2885-2892(in Chinese). [8] XU J, ZHAO Z T, WANG L, et al. A novel deep reinforcement learning architecture for dynamic power and bandwidth allocation in multibeam satellites[J]. Acta Astronautica, 2023, 204: 73-82. doi: 10.1016/j.actaastro.2022.12.018 [9] 丁晓进, 严岚亭, 张更新. 一种基于SDN的低轨卫星物联网信道资源动态分配方法: CN112272412A[P]. 2021-01-26.DING X J, YAN L T, ZHANG G X. A dynamic allocation method for low earth orbit satellite IoT channel resources based on SDN: CN112272412A[P]. 2021-01-26(in Chinese). [10] MAATTANEN H L, HOFSTROM B, EULER S, et al. 5G NR communication over GEO or LEO satellite systems: 3GPP RAN higher layer standardization aspects[C]//Proceedings of the IEEE Global Communications Conference. Piscataway: IEEE Press, 2019: 1-6. [11] 徐珉, 胡南. 5G非地面网络组网技术研究[C]//5G网络创新研讨会会议. 北京: 《移动通信》杂志社, 2018: 105-110.XU M, HU N. Research on 5G non ground network networking technology [C]//Proceedings of the 5G Network Innovation Seminar. Beijing: Mobile Communications Magazine, 2018: 105-110(in Chinese). [12] 姜逸飞, 吴树范, 莫乾坤. 基于大规模卫星星座的6G组网部署及核心网节点动态规划技术[C]//5G网络创新研讨会会议. 北京: 移动通信, 2022: 403-406.JIANG Y F, WU S F, MO Q K. 6G networking deployment and dynamic programming technology for core network nodes based on large-scale satellite constellations[C]//Proceedings of the 5G Network Innovation Seminar. Beijing: Mobile Communications Magazine, 2022: 403-406(in Chinese). [13] HIDAYAT A, GUNAWAN H, SYAHPUTRA NASUTION A, et al. Automatic statistics measurement antenna performance towards virtual ground station[J]. IOP Conference Series: Materials Science and Engineering, 2020, 852(1): 012159. [14] YOUNG E. GPU-accelerated demodulation for a satellite ground station[D]. Logan: Utah State University, 2019. [15] TIAN K, WANG Y W, HE X T, et al. Research and application of system equipment fault diagnosis based on satellite ground station[C]//Proceedings of the 2020 International Conference on Computer Engineering and Intelligent Control. Piscataway: IEEE Press, 2020: 66-72. [16] JIANG Y F, WU S F, MO Q K, et al. A cloud-computing-based portable networked ground station system for microsatellites[J]. Sensors, 2022, 22(9): 3569. doi: 10.3390/s22093569 [17] VASISHT D, CHANDRA R. A distributed and hybrid ground station network for low earth orbit satellites[C]//Proceedings of the 19th ACM Workshop on Hot Topics in Networks. New York: ACM, 2020: 190-196. [18] SCHILLING K, SCHECHNER Y, KOREN I. CloudCT-computed tomography of clouds by a small satellite formation[C]//Proceedings of the 12th IAA Symposium on Small Satellites for Earth Observation. Berlin: Springer, 2019: 7. [19] HOSSEINIAN M, CHOI J P, CHANG S H, et al. Review of 5G NTN standards development and technical challenges for satellite integration with the 5G network[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(8): 22-31. doi: 10.1109/MAES.2021.3072690 [20] DARWISH T, KURT G K, YANIKOMEROGLU H, et al. LEO satellites in 5G and beyond networks: a review from a standardization perspective[J]. IEEE Access, 2021, 10: 35040-35060. -