留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向卫星星座的多地面站系统链路分配策略

姜逸飞 何婉霞 刘文正 吴树范 魏骁 莫乾坤

姜逸飞,何婉霞,刘文正,等. 面向卫星星座的多地面站系统链路分配策略[J]. 北京航空航天大学学报,2025,51(4):1224-1233 doi: 10.13700/j.bh.1001-5965.2023.0177
引用本文: 姜逸飞,何婉霞,刘文正,等. 面向卫星星座的多地面站系统链路分配策略[J]. 北京航空航天大学学报,2025,51(4):1224-1233 doi: 10.13700/j.bh.1001-5965.2023.0177
JIANG Y F,HE W X,LIU W Z,et al. Multi-ground station system-based link allocation strategy for satellite constellation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1224-1233 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0177
Citation: JIANG Y F,HE W X,LIU W Z,et al. Multi-ground station system-based link allocation strategy for satellite constellation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1224-1233 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0177

面向卫星星座的多地面站系统链路分配策略

doi: 10.13700/j.bh.1001-5965.2023.0177
基金项目: 大规模卫星星座传输策略研究(23GFH-HT01-082)
详细信息
    通讯作者:

    E-mail:shufan.wu@sjtu.edu.cn

  • 中图分类号: V221+.3;TB553

Multi-ground station system-based link allocation strategy for satellite constellation

Funds: The Research on Networking Transmission Strategy for Large-Scale Satellite Constellation (23GFH-HT01-082)
More Information
  • 摘要:

    针对大规模卫星星座开展通信资源的研究,随着多个低轨星座的成功构建,标志着大规模卫星星座的商用化已经开始。这类大规模卫星星座可以同时兼顾低时延、广覆盖和大流量的优点。高效利用地面站资源成为大规模卫星星座研究的技术瓶颈,针对该问题,提出多星及多站拓扑结构,并结合链路时间资源,提出星地链路时间模型。同时,提出时隙插入策略,以多地面站的整体链路效能作为优化目标,得到多星及多站链路时间表。通过与随机策略和贪婪策略的性能对比,验证了所提策略的可行性和优越性。

     

  • 图 1  Walker-delta星座拓扑

    Figure 1.  Topology of Walker-delta constellation

    图 2  天线辐射方向

    Figure 2.  Antenna radiation direction

    图 3  Sat2和Grd1之间的干扰模型

    Figure 3.  Multi-satellite and multi-station interference models

    图 4  星地链路

    Figure 4.  Satellite-ground link

    图 5  状态限制链路判断流程

    Figure 5.  State limit link judgment process

    图 6  卫星激活率

    Figure 6.  Satellite enabl rate

    图 7  最大地面站时间间隙

    Figure 7.  Maximum gap of ground station

    图 8  星地链路时间

    Figure 8.  Satellite link to ground time

    图 9  地面站连接时间抖动

    Figure 9.  Ground station link duration jitter

    图 10  地面站总建链时间

    Figure 10.  Total link duration of ground station

    图 11  地面站平均时间间隙

    Figure 11.  Ground station average gap

    图 12  卫星连通率

    Figure 12.  Satellite link rate

    表  1  两大星座轨道拓扑

    Table  1.   Orbit topology of two constellations

    星座 组号 轨道高度/km 轨道数量 卫星总数 轨道倾角/(°)
    StarlinkS.155022158453
    S.25702072070
    S.354022158453.2
    S.45605834897.6
    S.55604217297.6
    OnewebO.112001257687.8
    下载: 导出CSV

    表  2  多地面站部署分布

    Table  2.   Deployment of multiple ground stations

    编号 纬度/(°) 经度/(°) 编号 纬度/(°) 经度/(°)
    1 20 110 21 35 120
    2 25 100 22 40 70
    3 25 105 23 40 75
    4 25 115 24 40 80
    5 30 85 25 40 85
    6 30 90 26 40 90
    7 30 95 27 40 95
    8 30 100 28 40 100
    9 30 105 29 40 105
    10 30 110 30 40 110
    11 30 115 31 40 115
    12 30 120 32 40 120
    13 35 80 33 45 85
    14 35 85 34 45 90
    15 35 90 35 45 115
    16 35 95 36 45 120
    17 35 100 37 45 125
    18 35 105 38 45 130
    19 35 110 39 50 120
    20 35 115 40 50 125
    下载: 导出CSV
  • [1] 吴树范, 王伟, 温济帆, 等. 低轨互联网星座发展研究[J]. 北京航空航天大学学报, 2024, 50(1): 1-11.

    WU S F, WANG W, WEN J F, et al. Review on development of LEO Internet constellation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(1): 1-11(in Chinese).
    [2] JIANG Y F, WU S F, MO Q K. A compass time-space model-based virtual IP routing scheme for NTSN satellite constellations[J]. Chinese Journal of Aeronautics, 2023, 36(9): 280-288. doi: 10.1016/j.cja.2023.02.022
    [3] JIANG Y F, WU S F, MO Q K, et al. An energy sensitive and congestion balance routing scheme for non-terrestrial-satellite-network (NTSN)[J]. Remote Sensing, 2023, 15(3): 585. doi: 10.3390/rs15030585
    [4] HUANG Y X, WU S F, KANG Z Y, et al. Reinforcement learning based dynamic distributed routing scheme for mega LEO satellite networks[J]. Chinese Journal of Aeronautics, 2023, 36(2): 284-291. doi: 10.1016/j.cja.2022.06.021
    [5] TAKAHASHI M, KAWAMOTO Y, KATO N, et al. DBF-based fusion control of transmit power and beam directivity for flexible resource allocation in HTS communication system toward B5G[J]. IEEE Transactions on Wireless Communications, 2021, 21(1): 95-105.
    [6] JIANG Y F, HE W X, LIU W Z, et al. A B5G non-terrestrial-network (NTN) and hybird constellation based data collection system (DCS)[J]. Aerospace, 2023, 10(4): 366. doi: 10.3390/aerospace10040366
    [7] 徐可笛, 徐兆斌, 郭晓旭, 等. 大规模卫星星座组网的码分多址干扰分析[J]. 北京航空航天大学学报, 2024, 50(9): 2885-2892.

    XU K D, XU Z B, GUO X X, et al. Analysis of CDMA interference in large-scale satellite constellation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(9): 2885-2892(in Chinese).
    [8] XU J, ZHAO Z T, WANG L, et al. A novel deep reinforcement learning architecture for dynamic power and bandwidth allocation in multibeam satellites[J]. Acta Astronautica, 2023, 204: 73-82. doi: 10.1016/j.actaastro.2022.12.018
    [9] 丁晓进, 严岚亭, 张更新. 一种基于SDN的低轨卫星物联网信道资源动态分配方法: CN112272412A[P]. 2021-01-26.

    DING X J, YAN L T, ZHANG G X. A dynamic allocation method for low earth orbit satellite IoT channel resources based on SDN: CN112272412A[P]. 2021-01-26(in Chinese).
    [10] MAATTANEN H L, HOFSTROM B, EULER S, et al. 5G NR communication over GEO or LEO satellite systems: 3GPP RAN higher layer standardization aspects[C]//Proceedings of the IEEE Global Communications Conference. Piscataway: IEEE Press, 2019: 1-6.
    [11] 徐珉, 胡南. 5G非地面网络组网技术研究[C]//5G网络创新研讨会会议. 北京: 《移动通信》杂志社, 2018: 105-110.

    XU M, HU N. Research on 5G non ground network networking technology [C]//Proceedings of the 5G Network Innovation Seminar. Beijing: Mobile Communications Magazine, 2018: 105-110(in Chinese).
    [12] 姜逸飞, 吴树范, 莫乾坤. 基于大规模卫星星座的6G组网部署及核心网节点动态规划技术[C]//5G网络创新研讨会会议. 北京: 移动通信, 2022: 403-406.

    JIANG Y F, WU S F, MO Q K. 6G networking deployment and dynamic programming technology for core network nodes based on large-scale satellite constellations[C]//Proceedings of the 5G Network Innovation Seminar. Beijing: Mobile Communications Magazine, 2022: 403-406(in Chinese).
    [13] HIDAYAT A, GUNAWAN H, SYAHPUTRA NASUTION A, et al. Automatic statistics measurement antenna performance towards virtual ground station[J]. IOP Conference Series: Materials Science and Engineering, 2020, 852(1): 012159.
    [14] YOUNG E. GPU-accelerated demodulation for a satellite ground station[D]. Logan: Utah State University, 2019.
    [15] TIAN K, WANG Y W, HE X T, et al. Research and application of system equipment fault diagnosis based on satellite ground station[C]//Proceedings of the 2020 International Conference on Computer Engineering and Intelligent Control. Piscataway: IEEE Press, 2020: 66-72.
    [16] JIANG Y F, WU S F, MO Q K, et al. A cloud-computing-based portable networked ground station system for microsatellites[J]. Sensors, 2022, 22(9): 3569. doi: 10.3390/s22093569
    [17] VASISHT D, CHANDRA R. A distributed and hybrid ground station network for low earth orbit satellites[C]//Proceedings of the 19th ACM Workshop on Hot Topics in Networks. New York: ACM, 2020: 190-196.
    [18] SCHILLING K, SCHECHNER Y, KOREN I. CloudCT-computed tomography of clouds by a small satellite formation[C]//Proceedings of the 12th IAA Symposium on Small Satellites for Earth Observation. Berlin: Springer, 2019: 7.
    [19] HOSSEINIAN M, CHOI J P, CHANG S H, et al. Review of 5G NTN standards development and technical challenges for satellite integration with the 5G network[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(8): 22-31. doi: 10.1109/MAES.2021.3072690
    [20] DARWISH T, KURT G K, YANIKOMEROGLU H, et al. LEO satellites in 5G and beyond networks: a review from a standardization perspective[J]. IEEE Access, 2021, 10: 35040-35060.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  78
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-13
  • 录用日期:  2023-08-04
  • 网络出版日期:  2023-08-30
  • 整期出版日期:  2025-04-30

目录

    /

    返回文章
    返回
    常见问答