留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直驱泵阀协同式线控制动单元压力串级控制

谭草 于鹏 李波 陆佳瑜 任云云

谭草,于鹏,李波,等. 直驱泵阀协同式线控制动单元压力串级控制[J]. 北京航空航天大学学报,2025,51(4):1163-1171 doi: 10.13700/j.bh.1001-5965.2023.0216
引用本文: 谭草,于鹏,李波,等. 直驱泵阀协同式线控制动单元压力串级控制[J]. 北京航空航天大学学报,2025,51(4):1163-1171 doi: 10.13700/j.bh.1001-5965.2023.0216
TAN C,YU P,LI B,et al. Pressure cascade control of brake-by-wire unit based on direct drive pump-valve cooperative[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1163-1171 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0216
Citation: TAN C,YU P,LI B,et al. Pressure cascade control of brake-by-wire unit based on direct drive pump-valve cooperative[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1163-1171 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0216

直驱泵阀协同式线控制动单元压力串级控制

doi: 10.13700/j.bh.1001-5965.2023.0216
基金项目: 国家自然科学基金(51975341);山东省优秀青年人才基金(ZR2022YQ51);山东省的重大科技创新工程项目(2021CXGC010703);山东省高等学校“青创科技计划”团队项目(2019KJB027,2022KJ232);山东省青年科技人才托举工程项目(SDAST2021qt20)
详细信息
    通讯作者:

    E-mail:libo@sdut.edu.cn

  • 中图分类号: U463.5;U469.72

Pressure cascade control of brake-by-wire unit based on direct drive pump-valve cooperative

Funds: National Natural Science Foundation of China (51975341); Outstanding Young Talents Foundation of Shandong Province (ZR2022YQ51); Major Scientific and Technological Innovation Project of Shandong Province (2021CXGC010703); Innovation Team Project of “Qing-Chuang Science and Technology Plan” of Colleges and Universities in Shandong Province (2019KJB027,2022KJ232); Young Technology Talent Supporting Project of Shandong Province (SDAST2021qt20)
More Information
  • 摘要:

    针对分布式制动及高级别自动驾驶的需求,设计一种直驱泵阀协同式线控制动单元,通过电磁直线执行器直接驱动的液压泵与主动阀协调实现轮缸压力调节。为实现压力的精确控制,建立面向控制的系统动力学模型,提出一种基于外环轮缸压力控制和内环直驱泵活塞位置控制的串级控制方法。外环设计了滑模控制器提高响应速度,内环设计了自适应积分鲁棒控制器以减小参数不确定性和时变干扰的影响,证明了所提方法李雅普诺夫稳定。结果表明:直驱泵阀协同式线控制动单元为分布式制动提供一种可行的新方案,所提方法可以进一步提高制动压力的调节速度与控制精度。

     

  • 图 1  直驱泵阀协同式线控制动单元原理图

    Figure 1.  Principle diagram of brake-by-wire unit based on direct drive pump-valve cooperative

    图 2  控制系统总体框图

    Figure 2.  Overall block diagram of control system

    图 3  自适应积分鲁棒控制框图

    Figure 3.  Adaptive integral robust control block diagram

    图 4  测试平台

    Figure 4.  Experimental platform

    图 5  阶跃响应测试结果

    Figure 5.  Experimental results of step response

    图 6  串级控制器时阶跃响应测试中直驱泵相关信号

    Figure 6.  Relevant signals of direct-drive pump in step response experiment with cascade controller

    图 7  正弦压力目标信号试验结果

    Figure 7.  Experimental results of sinusoidal pressure target signal

    图 8  三角波压力信号试验结果

    Figure 8.  Experimental results of triangular wave pressure signal

    表  1  直驱泵阀协同式线控制动单元参数

    Table  1.   Parameters of brake-by-wire unit based on direct drive pump-valve cooperative

    结构 参数 数值
    电磁直线执行器 线圈电阻R 1.40
    线圈等效电感L/mH 0.91
    反电势系数Ke/(Vs·m−1 24.61
    电磁力系数Km/(N·A−1) 24.61
    直驱泵 泵腔长度l/mm 16
    活塞面积S1/mm2 27.5
    主动阀 阀芯直径/mm 8
    阀座直径/mm 4
    制动液 弹性模量βe/MPa 1700
    密度ρ/(kg·m−3 1046
    下载: 导出CSV
  • [1] 高峰, 雍加望, 丁能根, 等. 集成电液制动系统助力算法及其功能验证[J]. 北京航空航天大学学报, 2017, 43(3): 424-431.

    GAO F, YONG J W, DING N G, et al. Booster algorithm and functionality validation of an integrated electro-hydraulic brake system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3): 424-431(in Chinese).
    [2] ZHAO J, CHEN Z C, ZHU B, et al. Precise active brake-pressure control for a novel electro-booster brake system[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 4774-4784. doi: 10.1109/TIE.2019.2924613
    [3] 何仁, 刘学军, 刘存香. 汽车电磁-液压复合制动技术研究进展[J]. 中国公路学报, 2014, 27(11): 109-119. doi: 10.3969/j.issn.1001-7372.2014.11.015

    HE R, LIU X J, LIU C X. Research progress in electromagnetic- hydraulic hybrid brake technology[J]. China Journal of Highway and Transport, 2014, 27(11): 109-119(in Chinese). doi: 10.3969/j.issn.1001-7372.2014.11.015
    [4] XIONG L, HAN W, YU Z P. Adaptive sliding mode pressure control for an electro-hydraulic brake system via desired-state and integral-antiwindup compensation[J]. Mechatronics, 2020, 68: 102359. doi: 10.1016/j.mechatronics.2020.102359
    [5] PAN N, YU L Y, WANG Z Z, et al. Design, modeling and simulation of a new compact electro-hydraulic brake system[C]//Proceedings of the SAE Technical Paper Series. Warrendale: SAE International, 2014.
    [6] 余卓平, 史彪飞, 卓桂荣, 等. 集成式电子液压制动系统位移压力特性理论研究[J]. 机械工程学报, 2022, 58(22): 294-303. doi: 10.3901/JME.2022.22.294

    YU Z P, SHI B F, ZHUO G R, et al. Theoretical research on pressure-position relationship of the integrated electronic-hydraulic brake system[J]. Journal of Mechanical Engineering, 2022, 58(22): 294-303(in Chinese). doi: 10.3901/JME.2022.22.294
    [7] 胡东海, 何仁. 电子液压制动系统的安全设计与匹配分析[J]. 农业工程学报, 2015, 9: 77-84. doi: 10.11975/j.issn.1002-6819.2015.09.013

    HU D H, HE R. Safety design and matching analysis of electronic hydraulic brake system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 9: 77-84(in Chinese). doi: 10.11975/j.issn.1002-6819.2015.09.013
    [8] 刘兆勇, 龙一鸣, 厉逸航, 等. 集成式电液制动系统设计及参数匹配的研究[J]. 汽车工程, 2022, 44(9): 1416-1424.

    LIU Z Y, LONG Y M, LI Y H, et al. Study on the design and parameter matching of integrated electro-hydraulic braking system[J]. Automotive Engineering, 2022, 44(9): 1416-1424(in Chinese).
    [9] 陈晋市, 刘思远, 王同建, 等. 8×8全电驱动越野车电机液压联合全液压制动系统设计及性能[J]. 兵工学报, 2021, 42(02): 422-429. doi: 10.3969/j.issn.1000-1093.2021.02.019

    CHEN J S, LIU S Y, WANG T J, et al. Design and performance of electro-hydraulic full hydraulic brake system for 8×8 all-electric drive off-road vehicle[J]. Acta Armamentarii, 2021, 42(02): 422-429(in Chinese). doi: 10.3969/j.issn.1000-1093.2021.02.019
    [10] WANG Z Z, YU L Y, YOU C X, et al. Fail-safe control allocation for a distributed brake-by-wire system considering the driver’s behaviour[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2014, 228(13): 1547-1567. doi: 10.1177/0954407014534225
    [11] GONG X X, QIAN L X, GE W G, et al. Research on electronic brake force distribution and anti-lock brake of vehicle based on direct drive electro hydraulic actuator[J]. International Journal of Automotive Engineering, 2020, 11(2): 22-29. doi: 10.20485/jsaeijae.11.2_22
    [12] 初亮, 赵迪, 李文惠. 电-液制动系统高速开关电磁阀的建模与动态特性仿真[J]. 汽车工程, 2017, 39(1): 61-65.

    CHU L, ZHAO D, LI W H. Modeling and dynamic characteristics simulation for fast-switching solenoid valves in electro-hydraulic braking systems[J]. Automotive Engineering, 2017, 39(1): 61-65(in Chinese).
    [13] 熊璐, 韩伟, 余卓平, 等. 考虑关键非线性特征的集成式电子液压制动系统主缸液压力精确控制[J]. 机械工程学报, 2019, 55(24): 117-126. doi: 10.3901/JME.2019.24.117

    XIONG L, HAN W, YU Z P, et al. Pressure precisely control of master cylinder on integrated-electro-hydraulic brake system considering the critical nonlinear characteristics[J]. Journal of Mechanical Engineering, 2019, 55(24): 117-126(in Chinese). doi: 10.3901/JME.2019.24.117
    [14] 石琴, 刘鑫, 应贺烈, 等. 电液线控制动系统压力反步控制算法研究[J]. 汽车工程, 2022, 44(5): 747-755.

    SHI Q, LIU X, YING H L, et al. Study on the backstepping control algorithm for the hydraulic pressure in electro-hydraulic brake-by-wire system[J]. Automotive Engineering, 2022, 44(5): 747-755(in Chinese).
    [15] JI Y, ZHANG J Z, HE C K, et al. Constraint performance pressure tracking control with asymmetric continuous friction compensation for booster based brake-by-wire system[J]. Mechanical Systems and Signal Processing, 2022, 174: 109083. doi: 10.1016/j.ymssp.2022.109083
    [16] TAN C, REN H X, LI B, et al. Design and analysis of a novel cascade control algorithm for braking-by-wire system based on electromagnetic direct-drive valves[J]. Journal of the Franklin Institute, 2022, 359(16): 8497-8521. doi: 10.1016/j.jfranklin.2022.09.006
    [17] HAN W, XIONG L, YU Z P. Braking pressure control in electro-hydraulic brake system based on pressure estimation with nonlinearities and uncertainties[J]. Mechanical Systems and Signal Processing, 2019, 131: 703-727. doi: 10.1016/j.ymssp.2019.02.009
    [18] 俞军涛, 占昊, 王丽, 等. 压电式高速开关阀控液压缸位置系统[J]. 北京航空航天大学学报, 2021, 47(4): 706-714.

    YU J T, ZHAN H, WANG L, et al. Hydraulic cylinder position system controlled by piezoelectric high-speed on-off valve[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 706-714(in Chinese).
    [19] JIANG L G, SHI Q, WEI Y J, et al. Electro-hydraulic braking dynamics for pressure demand control of brake-by-wire system[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2024, 238(4): 735-748. doi: 10.1177/09544070221135390
    [20] 谭草, 鲁应涛, 葛文庆, 等. 直驱式永磁直线电机深度模糊滑模-自抗扰控制[J]. 西安交通大学学报, 2023, 57(1): 185-194. doi: 10.7652/xjtuxb202301018

    TAN C, LU Y T, GE W Q, et al. Depth fuzzy sliding-mode active disturbance rejection control method of permanent magnet linear motor for direct drive system[J]. Journal of Xi’an Jiaotong University, 2023, 57(1): 185-194(in Chinese). doi: 10.7652/xjtuxb202301018
    [21] 李波, 黎德祥, 葛文庆, 等. 基于直驱阀的快速响应线控制动系统液压力精确控制[J]. 中国公路学报, 2021, 34(9): 121-132. doi: 10.3969/j.issn.1001-7372.2021.09.010

    LI B, LI D X, GE W Q, et al. Precision control of hydraulic pressure in fast-response brake-by-wire system based on direct-drive valve[J]. China Journal of Highway and Transport, 2021, 34(9): 121-132(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.09.010
    [22] 潘菲, 朱宏玉. 航天器非奇异自适应终端滑模姿轨联合控制[J]. 北京航空航天大学学报, 2020, 46(7): 1354-1362.

    PAN F, ZHU H Y. Spacecraft non-singular adaptive terminal sliding mode attitude-orbit coupling control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1354-1362(in Chinese).
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  85
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-27
  • 录用日期:  2023-06-06
  • 网络出版日期:  2023-06-15
  • 整期出版日期:  2025-04-30

目录

    /

    返回文章
    返回
    常见问答