Pressure cascade control of brake-by-wire unit based on direct drive pump-valve cooperative
-
摘要:
针对分布式制动及高级别自动驾驶的需求,设计一种直驱泵阀协同式线控制动单元,通过电磁直线执行器直接驱动的液压泵与主动阀协调实现轮缸压力调节。为实现压力的精确控制,建立面向控制的系统动力学模型,提出一种基于外环轮缸压力控制和内环直驱泵活塞位置控制的串级控制方法。外环设计了滑模控制器提高响应速度,内环设计了自适应积分鲁棒控制器以减小参数不确定性和时变干扰的影响,证明了所提方法李雅普诺夫稳定。结果表明:直驱泵阀协同式线控制动单元为分布式制动提供一种可行的新方案,所提方法可以进一步提高制动压力的调节速度与控制精度。
Abstract:Aiming at the requirements of distributed braking and high-level automatic driving, a brake-by-wire unit based on a direct drive pump-valve cooperative is designed, to realize the wheel cylinder pressure regulation, the hydraulic pump directly driven by the electromagnetic linear actuator coordinates with the active valve. A control-oriented system dynamics model is established to realize the precise control of pressure, and a cascade control method is proposed, which includes an outer loop to control the cylinder pressure and an inner loop to control the plunger position in the pump. An adaptive integral robust controller is created for the inner loop to lessen the impact of time-varying interference and parameter uncertainty, while a sliding mode controller is designed for the outer loop to increase reaction speed. It is proved that the algorithm is Lyapunov stable. The results suggest that the developed brake unit is a possible novel scheme for distributed braking, and the proposed method mechanism can increase braking pressure speed and control accuracy even further.
-
表 1 直驱泵阀协同式线控制动单元参数
Table 1. Parameters of brake-by-wire unit based on direct drive pump-valve cooperative
结构 参数 数值 电磁直线执行器 线圈电阻R/Ω 1.40 线圈等效电感L/mH 0.91 反电势系数Ke/(Vs·m−1) 24.61 电磁力系数Km/(N·A−1) 24.61 直驱泵 泵腔长度l/mm 16 活塞面积S1/mm2 27.5 主动阀 阀芯直径/mm 8 阀座直径/mm 4 制动液 弹性模量βe/MPa 1700 密度ρ/(kg·m−3) 1046 -
[1] 高峰, 雍加望, 丁能根, 等. 集成电液制动系统助力算法及其功能验证[J]. 北京航空航天大学学报, 2017, 43(3): 424-431.GAO F, YONG J W, DING N G, et al. Booster algorithm and functionality validation of an integrated electro-hydraulic brake system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3): 424-431(in Chinese). [2] ZHAO J, CHEN Z C, ZHU B, et al. Precise active brake-pressure control for a novel electro-booster brake system[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 4774-4784. doi: 10.1109/TIE.2019.2924613 [3] 何仁, 刘学军, 刘存香. 汽车电磁-液压复合制动技术研究进展[J]. 中国公路学报, 2014, 27(11): 109-119. doi: 10.3969/j.issn.1001-7372.2014.11.015HE R, LIU X J, LIU C X. Research progress in electromagnetic- hydraulic hybrid brake technology[J]. China Journal of Highway and Transport, 2014, 27(11): 109-119(in Chinese). doi: 10.3969/j.issn.1001-7372.2014.11.015 [4] XIONG L, HAN W, YU Z P. Adaptive sliding mode pressure control for an electro-hydraulic brake system via desired-state and integral-antiwindup compensation[J]. Mechatronics, 2020, 68: 102359. doi: 10.1016/j.mechatronics.2020.102359 [5] PAN N, YU L Y, WANG Z Z, et al. Design, modeling and simulation of a new compact electro-hydraulic brake system[C]//Proceedings of the SAE Technical Paper Series. Warrendale: SAE International, 2014. [6] 余卓平, 史彪飞, 卓桂荣, 等. 集成式电子液压制动系统位移压力特性理论研究[J]. 机械工程学报, 2022, 58(22): 294-303. doi: 10.3901/JME.2022.22.294YU Z P, SHI B F, ZHUO G R, et al. Theoretical research on pressure-position relationship of the integrated electronic-hydraulic brake system[J]. Journal of Mechanical Engineering, 2022, 58(22): 294-303(in Chinese). doi: 10.3901/JME.2022.22.294 [7] 胡东海, 何仁. 电子液压制动系统的安全设计与匹配分析[J]. 农业工程学报, 2015, 9: 77-84. doi: 10.11975/j.issn.1002-6819.2015.09.013HU D H, HE R. Safety design and matching analysis of electronic hydraulic brake system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 9: 77-84(in Chinese). doi: 10.11975/j.issn.1002-6819.2015.09.013 [8] 刘兆勇, 龙一鸣, 厉逸航, 等. 集成式电液制动系统设计及参数匹配的研究[J]. 汽车工程, 2022, 44(9): 1416-1424.LIU Z Y, LONG Y M, LI Y H, et al. Study on the design and parameter matching of integrated electro-hydraulic braking system[J]. Automotive Engineering, 2022, 44(9): 1416-1424(in Chinese). [9] 陈晋市, 刘思远, 王同建, 等. 8×8全电驱动越野车电机液压联合全液压制动系统设计及性能[J]. 兵工学报, 2021, 42(02): 422-429. doi: 10.3969/j.issn.1000-1093.2021.02.019CHEN J S, LIU S Y, WANG T J, et al. Design and performance of electro-hydraulic full hydraulic brake system for 8×8 all-electric drive off-road vehicle[J]. Acta Armamentarii, 2021, 42(02): 422-429(in Chinese). doi: 10.3969/j.issn.1000-1093.2021.02.019 [10] WANG Z Z, YU L Y, YOU C X, et al. Fail-safe control allocation for a distributed brake-by-wire system considering the driver’s behaviour[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2014, 228(13): 1547-1567. doi: 10.1177/0954407014534225 [11] GONG X X, QIAN L X, GE W G, et al. Research on electronic brake force distribution and anti-lock brake of vehicle based on direct drive electro hydraulic actuator[J]. International Journal of Automotive Engineering, 2020, 11(2): 22-29. doi: 10.20485/jsaeijae.11.2_22 [12] 初亮, 赵迪, 李文惠. 电-液制动系统高速开关电磁阀的建模与动态特性仿真[J]. 汽车工程, 2017, 39(1): 61-65.CHU L, ZHAO D, LI W H. Modeling and dynamic characteristics simulation for fast-switching solenoid valves in electro-hydraulic braking systems[J]. Automotive Engineering, 2017, 39(1): 61-65(in Chinese). [13] 熊璐, 韩伟, 余卓平, 等. 考虑关键非线性特征的集成式电子液压制动系统主缸液压力精确控制[J]. 机械工程学报, 2019, 55(24): 117-126. doi: 10.3901/JME.2019.24.117XIONG L, HAN W, YU Z P, et al. Pressure precisely control of master cylinder on integrated-electro-hydraulic brake system considering the critical nonlinear characteristics[J]. Journal of Mechanical Engineering, 2019, 55(24): 117-126(in Chinese). doi: 10.3901/JME.2019.24.117 [14] 石琴, 刘鑫, 应贺烈, 等. 电液线控制动系统压力反步控制算法研究[J]. 汽车工程, 2022, 44(5): 747-755.SHI Q, LIU X, YING H L, et al. Study on the backstepping control algorithm for the hydraulic pressure in electro-hydraulic brake-by-wire system[J]. Automotive Engineering, 2022, 44(5): 747-755(in Chinese). [15] JI Y, ZHANG J Z, HE C K, et al. Constraint performance pressure tracking control with asymmetric continuous friction compensation for booster based brake-by-wire system[J]. Mechanical Systems and Signal Processing, 2022, 174: 109083. doi: 10.1016/j.ymssp.2022.109083 [16] TAN C, REN H X, LI B, et al. Design and analysis of a novel cascade control algorithm for braking-by-wire system based on electromagnetic direct-drive valves[J]. Journal of the Franklin Institute, 2022, 359(16): 8497-8521. doi: 10.1016/j.jfranklin.2022.09.006 [17] HAN W, XIONG L, YU Z P. Braking pressure control in electro-hydraulic brake system based on pressure estimation with nonlinearities and uncertainties[J]. Mechanical Systems and Signal Processing, 2019, 131: 703-727. doi: 10.1016/j.ymssp.2019.02.009 [18] 俞军涛, 占昊, 王丽, 等. 压电式高速开关阀控液压缸位置系统[J]. 北京航空航天大学学报, 2021, 47(4): 706-714.YU J T, ZHAN H, WANG L, et al. Hydraulic cylinder position system controlled by piezoelectric high-speed on-off valve[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 706-714(in Chinese). [19] JIANG L G, SHI Q, WEI Y J, et al. Electro-hydraulic braking dynamics for pressure demand control of brake-by-wire system[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2024, 238(4): 735-748. doi: 10.1177/09544070221135390 [20] 谭草, 鲁应涛, 葛文庆, 等. 直驱式永磁直线电机深度模糊滑模-自抗扰控制[J]. 西安交通大学学报, 2023, 57(1): 185-194. doi: 10.7652/xjtuxb202301018TAN C, LU Y T, GE W Q, et al. Depth fuzzy sliding-mode active disturbance rejection control method of permanent magnet linear motor for direct drive system[J]. Journal of Xi’an Jiaotong University, 2023, 57(1): 185-194(in Chinese). doi: 10.7652/xjtuxb202301018 [21] 李波, 黎德祥, 葛文庆, 等. 基于直驱阀的快速响应线控制动系统液压力精确控制[J]. 中国公路学报, 2021, 34(9): 121-132. doi: 10.3969/j.issn.1001-7372.2021.09.010LI B, LI D X, GE W Q, et al. Precision control of hydraulic pressure in fast-response brake-by-wire system based on direct-drive valve[J]. China Journal of Highway and Transport, 2021, 34(9): 121-132(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.09.010 [22] 潘菲, 朱宏玉. 航天器非奇异自适应终端滑模姿轨联合控制[J]. 北京航空航天大学学报, 2020, 46(7): 1354-1362.PAN F, ZHU H Y. Spacecraft non-singular adaptive terminal sliding mode attitude-orbit coupling control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1354-1362(in Chinese). -