留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体激励对火星条件下翼型气动特性影响

杨香港 高永新 汪忠明 李益文 姚程

杨香港,高永新,汪忠明,等. 等离子体激励对火星条件下翼型气动特性影响[J]. 北京航空航天大学学报,2025,51(6):2129-2136 doi: 10.13700/j.bh.1001-5965.2023.0312
引用本文: 杨香港,高永新,汪忠明,等. 等离子体激励对火星条件下翼型气动特性影响[J]. 北京航空航天大学学报,2025,51(6):2129-2136 doi: 10.13700/j.bh.1001-5965.2023.0312
YANG X G,GAO Y X,WANG Z M,et al. Effect of plasma excitation on aerodynamic characteristics of airfoil in Martian atmosphere[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2129-2136 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0312
Citation: YANG X G,GAO Y X,WANG Z M,et al. Effect of plasma excitation on aerodynamic characteristics of airfoil in Martian atmosphere[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2129-2136 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0312

等离子体激励对火星条件下翼型气动特性影响

doi: 10.13700/j.bh.1001-5965.2023.0312
基金项目: 

国家自然科学基金(51906054,51776222)

详细信息
    通讯作者:

    E-mail:yaocheng@hfut.edu.cn

  • 中图分类号: V211.4

Effect of plasma excitation on aerodynamic characteristics of airfoil in Martian atmosphere

Funds: 

National Natural Science Foundation of China (51906054,51776222);

More Information
  • 摘要:

    由于火星大气密度低、气压小,火星无人机翼型气动性能亟待进一步提高。采用等离子体激励主动流动控制技术提高火星条件下的翼型升力、降低翼型阻力。在火星低雷诺数条件下研究了等离子体激励的作用位置、激励功率及来流攻角对翼型升力和阻力的影响。结果表明:等离子体激励在下表面尾缘区域增升,最大增升率为37%;在下表面前缘区域减阻,最大减阻率为8%;激励功率越大,来流攻角越小,翼型升阻比提升越明显。等离子体激励诱导压力波,在激励的上、下游分别形成增压区和减压区,导致翼型表面形成增压面和减压面。当激励位置靠近尾缘,增压面扩大,翼型上、下表面压差增大,从而实现增升;当激励位置靠近前缘,减压面扩大,翼型压差阻力降低,从而实现减阻。

     

  • 图 1  模型示意图

    Figure 1.  Schematic diagram of model

    图 2  仿真数据和实验数据的比较

    Figure 2.  Comparison between simulated data and experiment data

    图 3  不同激励位置的翼型气动特性

    Figure 3.  Aerodynamic characteristics of airfoil with different excitation positions

    图 4  不同激励功率及攻角的翼型气动特性

    Figure 4.  Aerodynamic characteristics with different excitation power and angle of attack

    图 5  翼型表面压力分布

    Figure 5.  Pressure distributions on surface of airfoil

    图 6  翼型流场温度分布

    Figure 6.  Temperature distribution around airfoil flow field

    图 7  翼型下表面法线方向的速度分布(P2工况)

    Figure 7.  Velocity distribution along normal direction on lower surface of airfoil (P2 case)

    图 8  翼型下表面壁面摩擦系数分布

    Figure 8.  Skin friction coefficient distribution on lower surface of airfoil

    图 9  压力波发展过程(P3工况)

    Figure 9.  Pressure wave propagation for P3 case

    图 10  启动涡发展过程(P3工况)

    Figure 10.  Strat-up vortex development process for P3 case

    图 11  等离子体激励形成的增压区和减压区(P3工况,t > 1 s)

    Figure 11.  Pressurized region and depressurized region induced by plasma excitation (P3 case, t > 1 s)

    表  1  网格无关性

    Table  1.   Mesh independence

    编号网格数ClCdy+
    50 1070.671 90.048 7≤1
    105 6690.673 00.049 5≤1
    233 7010.673 10.050 1≤1
    下载: 导出CSV

    表  2  不同激励位置下的翼型阻力系数

    Table  2.   Drag coefficient with excitation positions

    激励位置压差阻力系数摩擦阻力系数总阻力系数
    无激励0.037 80.016 80.054 6
    0.1c0.019 80.030 40.050 2
    0.2c0.023 50.028 90.052 4
    0.3c0.027 00.027 80.054 8
    0.4c0.030 50.026 70.057 2
    0.5c0.034 10.025 40.059 5
    0.6c0.037 90.024 10.062 0
    0.7c0.041 70.022 40.064 1
    0.8c0.045 40.020 40.065 8
    0.9c0.048 60.017 40.066 0
    下载: 导出CSV
  • [1] 赵鹏越, 全齐全, 邓宗全, 等. 旋翼式火星无人机技术发展综述[J]. 宇航学报, 2018, 39(2): 121-130. doi: 10.3873/j.issn.1000-1328.2018.02.002

    ZHAO P Y, QUAN Q Q, DENG Z Q, et al. Overview of research on rotary-wing Mars unmanned aerial vehicles[J]. Journal of Astronautics, 2018, 39(2): 121-130 (in Chinese). doi: 10.3873/j.issn.1000-1328.2018.02.002
    [2] KONING W J F, JOHNSON W, GRIP H F. Improved Mars helicopter aerodynamic rotor model for comprehensive analyses[J]. AIAA Journal, 2019, 57(9): 3969-3979. doi: 10.2514/1.J058045
    [3] CHAHAT N, MILLER J, DECROSSAS E, et al. The Mars helicopter telecommunication link: antennas, propagation, and link analysis[J]. IEEE Antennas and Propagation Magazine, 2020, 62(6): 12-22. doi: 10.1109/MAP.2020.2990088
    [4] 李益文, 王宇天, 庞垒, 等. 进气道等离子体/磁流体流动控制研究进展[J]. 力学学报, 2019, 51(2): 311-321. doi: 10.6052/0459-1879-18-290

    LI Y W, WANG Y T, PANG L, et al. Research progress of plasma/MHD flow control in inlet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 311-321 (in Chinese). doi: 10.6052/0459-1879-18-290
    [5] 王万波, 姜裕标, 黄勇, 等. 大型飞机襟翼吹气增升风洞试验[J]. 航空学报, 2023, 44(13): 127870.

    WANG W B, JIANG Y B, HUANG Y, et al. Lift enhancement wind tunnel test with flap blowing for large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 127870 (in Chinese).
    [6] 章胜华, 邓枫, 覃宁, 等. 激波控制鼓包对跨声速抖振影响的数值研究[J]. 航空学报, 2022, 43(11): 526806.

    ZHANG S H, DENG F, QIN N, et al. Numerical study on impact of shock control bump on transonic buffet[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 526806 (in Chinese).
    [7] 李超, 黄河峡, 罗金玲, 等. 基于微型叶片式涡流发生器的前体压缩面低能流掺混机理[J]. 空气动力学学报, 2022, 40(1): 119-128.

    LI C, HUANG H X, LUO J L, et al. Mixing of low-momentum fluids over the forebody ramp based on micro-vane vortex generators[J]. Acta Aerodynamica Sinica, 2022, 40(1): 119-128 (in Chinese).
    [8] 邹琳, 左红成, 柳迪伟, 等. 基于定常吹吸气的波浪型圆柱主动控制研究[J]. 力学学报, 2022, 54(11): 2970-2983. doi: 10.6052/0459-1879-22-212

    ZOU L, ZUO H C, LIU D W, et al. Active flow control of wavy cylinder based on steady blowing and suction[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 2970-2983 (in Chinese). doi: 10.6052/0459-1879-22-212
    [9] SU W Y, CHEN Y, ZHANG F R, et al. Control of pseudo-shock oscillation in scramjet inlet-isolator using periodical excitation[J]. Acta Astronautica, 2018, 143: 147-154. doi: 10.1016/j.actaastro.2017.10.040
    [10] YU Y, XU J L, GAN N G. Effects of parameters on continuously working plasma synthetic jet[J]. Engineering Applications of Computational Fluid Mechanics, 2014, 8(1): 55-69. doi: 10.1080/19942060.2014.11015497
    [11] 王宏宇, 闵夫, 解真东, 等. 直流放电控制高速带斜坡锥体气动力的有效性[J/OL]. 空气动力学学报. (2023-1-10)[2023-02-16]. https://kns.cnki.net/kcms/detail/51.1192.TK.20230216.1037.002.html.

    WANG H Y, MIN F, XIE Z D, et al. Effectiveness of DC discharge in controlling aerodynamic force of high-speed cone with slope[J/OL]. Acta Aerodynamica Sinica. (2023-1-10)[2023-02-16]. https://kns.cnki.net/kcms/detail/51.1192.TK.20230216.1037.002.html (in Chinese).
    [12] 罗振兵, 夏智勋, 邓雄, 等. 合成双射流及其流动控制技术研究进展[J]. 空气动力学学报, 2017, 35(2): 252-264,251.

    LUO Z B, XIA Z X, DENG X, et al. Research progress of dual synthetic jets and its flow control technology[J]. Acta Aerodynamica Sinica, 2017, 35(2): 252-264,251 (in Chinese).
    [13] 张鑫, 王勋年. 正弦交流介质阻挡放电等离子体激励器诱导流场研究的进展与展望[J]. 力学学报, 2023, 55(2): 285-298. doi: 10.6052/0459-1879-22-377

    ZHANG X, WANG X N. Research progress and outlook of flow field created by dielectric barrier discharge plasma actuators driven by a sinusoidal alternating current high-voltage power[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 285-298 (in Chinese). doi: 10.6052/0459-1879-22-377
    [14] 陆政旭, 陈肇麟, 肖天航, 等. 火星旋翼无人机翼型局部振动的数值模拟[C]//2021中国力学大会. 南京: 南京航空航天大学, 2022: 480-492.

    LU Z X, CHEN Z L, XIAO T H, et al. Numerical simulation of airfoil for Martian rotor with local oscillation[C]//Proceedings of the 2021 China Mechanics Congress. Nanjing: Nanjing University of Aeronautics and Astronauties, 2022: 480-492(in Chinese).
    [15] TABUCHI K, SUMITOMO R, TANAKA K, et al. Numerical analysis of magnetohydrodynamic flow control in Mars direct and orbital entries[C]// AIAA SCITECH 2023 Forum. Reston: AIAA, 2023: AIAA2023-2559.
    [16] TAKAGAKI M, ISONO S, NAGAI H, et al. Evaluation of plasma actuator performance in Martian atmosphere for applications to Mars airplanes[C]// 4th Flow Control Conference. Reston: AIAA, 2008: 2008-3762.
    [17] 李应红, 吴云, 梁华, 等. 等离子体激励气动力学探索与展望[J]. 力学进展, 2022, 52(1): 1-32. doi: 10.6052/1000-0992-21-044

    LI Y H, WU Y, LIANG H, et al. Exploration and outlook of plasma-actuated gas dynamics[J]. Advances in Mechanics, 2022, 52(1): 1-32 (in Chinese). doi: 10.6052/1000-0992-21-044
    [18] 黄广靖, 戴玉婷, 杨超. 低雷诺数俯仰振荡翼型等离子体流动控制[J]. 力学学报, 2021, 53(1): 136-155.

    HUANG G J, DAI Y T, YANG C. Plasma-based flow control on pitching airfoil at low Reynolds number[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 136-155 (in Chinese).
    [19] 刘汝兵, 孙伟, 牛中国, 等. 火花放电等离子体射流实验研究[J]. 推进技术, 2015, 36(3): 372-377.

    LIU R B, SUN W, NIU Z G, et al. Experimental investigation on spark discharge plasma jet[J]. Journal of Propulsion Technology, 2015, 36(3): 372-377 (in Chinese).
    [20] 王浩, 程邦勤, 纪振伟, 等. 局部电弧丝状放电控制激波/边界层干扰的数值研究[J]. 推进技术, 2017, 38(11): 2431-2438.

    WANG H, CHENG B Q, JI Z W, et al. Numerical simulation of localized arc filament plasma actuator for shock wave/boundary layer interaction control[J]. Journal of Propulsion Technology, 2017, 38(11): 2431-2438 (in Chinese).
    [21] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405.

    WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405 (in Chinese).
    [22] OGLOBLINA P, MORILLO-CANDAS A S, SILVA A F, et al. Mars in situ oxygen and propellant production by non-equilibrium plasmas[J]. Plasma Sources Science Technology, 2021, 30(6): 065005. doi: 10.1088/1361-6595/abec28
    [23] 钱茂程. 模拟火星条件下CO2辉光放电产物及发射光谱研究[D]. 济南: 山东大学, 2021.

    QIAN M C. Study on CO2 glow discharge products and emission spectra under simulated Mars conditions[D]. Jinan: Shandong University, 2021 (in Chinese).
    [24] GUERRA V, SILVA T, PINHÃO N, et al. Plasmas for in situ resource utilization on Mars: Fuels, life support, and agriculture[J]. Journal of Applied Physics, 2022, 132(7): 070902.
    [25] 杨婷婷. 火星无人机梯形桨叶空气动力学特性分析及实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    YANG T T. Analysis and experimental study on aerodynamic characteristics of trapezoidal blades of Mars UAV[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese).
    [26] 王宇天, 张百灵, 李益文, 等. 等离子体激励控制激波与边界层干扰流动分离数值研究[J]. 航空动力学报, 2018, 33(2): 364-371.

    WANG Y T, ZHANG B L, LI Y W, et al. Numerical investigation for control of shock wave and boundary layer interactions flow separation with plasma actuation[J]. Journal of Aerospace Power, 2018, 33(2): 364-371 (in Chinese).
    [27] 林敏, 徐浩军, 梁华, 等. 等离子体气动激励减小翼型跨音速阻力的数值模拟[J]. 空军工程大学学报(自然科学版), 2012, 13(2): 6-10.

    LIN M, XU H J, LIANG H, et al. Numerical simulation of plasma aerodynamic actuation for airfoil transonic drag reduction[J]. Journal of Air Force Engineering University (Natural Science Edition), 2012, 13(2): 6-10 (in Chinese).
    [28] HIDAKA H, OKAMOTO M. An experimental study of triangular airfoils for Mars airplane[J]. Transactions of the Japan Society of Aeronautical and Space Sciences, Aerospace Technology Japan, 2014, 12(20): 21-27.
    [29] 刘加伟, 柳兆涛, 丁仕洪, 等. 等离子体热效应对NACA0012翼型增升减阻的研究[J]. 推进技术, 2020, 41(5): 1055-1062.

    LIU J W, LIU Z T, DING S H, et al. Study on lift enhancement and drag reduction of NACA0012 airfoil under plasma thermal effect[J]. Journal of Propulsion Technology, 2020, 41(5): 1055-1062 (in Chinese).
    [30] LI Y W, LI Y H, ZHOU Z W, et al. Experimental investigation on induced flow velocity of plasma aerodynamic actuation[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2009, 26(1): 23-28.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  52
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 录用日期:  2023-07-21
  • 网络出版日期:  2023-08-18
  • 整期出版日期:  2025-06-30

目录

    /

    返回文章
    返回
    常见问答