Aircraft multi-velocity difference car-following model based on flight networking operation
-
摘要:
为提高空中交通流的稳定性,基于飞联网运行特性研究了考虑偏移的航空器多速度差跟驰模型。为定量描述航空器间的偏移对跟驰行为的影响,引入偏移阻碍作用,建立偏移与前导航空器速度的关系,将跟驰模型扩展到三维模式;考虑飞联网环境下的多航空器信息交互模式,构建航空器多速度差跟驰模型,并应用稳定性分析方法,推导所提模型稳定性判别条件,计算稳态通行能力;在对模型进行参数标定的基础上,以考虑3架前导航空器的多速度差跟驰模型为例,设计数值仿真实验。结果表明:阻碍作用随偏移量的增大而减小,在相同偏移量情况下,重型机的阻碍作用最大,轻型机最小;所提模型相比传统模型具备更优的稳定域,且考虑前导航空器数量越多、权重系数越大,所提模型的稳定性越好;相同取值条件下,所提模型的燃油消耗系数均低于传统模型,当敏感系数取1 s−1时,燃油消耗系数降低27.12%。数值仿真表明航空器多速度差跟驰模型有利于提高空中交通流的稳定性,降低燃油消耗。
Abstract:In order to improve the stability of air traffic flow, this study investigated an aircraft multi-velocity difference car-following model considering offsets based on the characteristics of flight networking operations. Firstly, to quantitatively describe the influence of offsets between aircraft on the car-following behavior, the concept of offset hindrance was introduced, and the relationship between offset and the velocity of the leading aircraft was established, extending the car-following model to a three-dimensional mode. Secondly, by considering the multi-aircraft information interaction mode in the flight networking environment, a multi-velocity difference aircraft car-following model was constructed, and stability analysis methods were applied to derive the stability discrimination conditions and calculate the steady-state traffic capacity of the proposed model. Finally, based on the parameter calibration of the model, numerical simulation experiments were designed by using the multi-velocity difference car-following model considering three leading aircraft. The results show that the hindrance effect decreases as the offset increases, and for the same offset value, heavy aircraft have the highest hindrance effect while light aircraft have the lowest hindrance effect. The proposed model has a better stable region compared to traditional models, and the stability of the proposed model improves with an increase in the number of leading aircraft and the weight coefficient. Under the same parameter values, the fuel consumption coefficient of the proposed model is lower than that of the traditional car-following model, and when the sensitivity coefficient is set to 1 s−1, the fuel consumption coefficient decreases by 27.12%. Numerical simulations demonstrate that the aircraft multi-velocity difference model contributes to improving the stability of air traffic flow and reducing fuel consumption.
-
表 1 模型参数取值
Table 1. Parameter values of model
目标函数 $ {v_0} $/(m·s−1) $ \beta $ $ {b_x} $ $ {f_{{\text{rel}}}}({S^{{\text{sim}}}}) $ 157.8 1.02 136 $ {f_{{\text{abs}}}}({S^{{\text{sim}}}}) $ 196.4 2.56 204 $ {f_{{\text{mix}}}}({S^{{\text{sim}}}}) $ 250 1.13 160 -
[1] 王飞, 韩翔宇. 基于分形插值的空中交通流量短期预测[J]. 航空学报, 2022, 43(9): 325585.WANG F, HAN X Y. Short-term prediction of air traffic flow based on fractal interpolation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 325585(in Chinese). [2] 赵嶷飞, 王梦琦. 空中交通工程学理论内涵与关键科学技术[J]. 航空学报, 2022, 43(12): 026537.ZHAO Y F, WANG M Q. Important theories and critical scientific technology of air traffic engineering[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 026537(in Chinese). [3] 马园园, 胡明华, 张洪海, 等. 多机场终端区进场航班协同排序方法[J]. 航空学报, 2015, 36(7): 2279-2290.MA Y Y, HU M H, ZHANG H H, et al. Optimized method for collaborative arrival sequencing and scheduling in metroplex terminal area[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2279-2290(in Chinese). [4] 王超, 郭宗震, 李冬. 基于三参数Burr分布的机头时距分布特性研究[J]. 计算机仿真, 2020, 37(5): 35-39. doi: 10.3969/j.issn.1006-9348.2020.05.008WANG C, GUO Z Z, LI D. Research on the time-headway distribution characteristics of nose based on three-parameter Burr distribution[J]. Computer Simulation, 2020, 37(5): 35-39(in Chinese). doi: 10.3969/j.issn.1006-9348.2020.05.008 [5] ZHANG H H, XU Y, YANG L, et al. Macroscopic model and simulation analysis of air traffic flow in airport terminal area[J]. Discrete Dynamics in Nature and Society, 2014, 2014(1): 741654. [6] SHAFIENYA H, REGAN A C. 4D flight trajectory prediction using a hybrid deep learning prediction method based on ADS-B technology: a case study of Hartsfield-Jackson Atlanta International Airport (ATL)[J]. Transportation Research Part C: Emerging Technologies, 2022, 144: 103878. doi: 10.1016/j.trc.2022.103878 [7] GUI G, ZHOU Z Q, WANG J, et al. Machine learning aided air traffic flow analysis based on aviation big data[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 4817-4826. doi: 10.1109/TVT.2020.2981959 [8] ZENG W L, LI J, QUAN Z B, et al. A deep graph-embedded LSTM neural network approach for airport delay prediction[J]. Journal of Advanced Transportation, 2021, 2021: 6638130. [9] 黎新华, 张兆宁, 王莉莉. 基于跟驰稳定的终端区容量评估方法[J]. 系统工程理论与实践, 2009, 29(2): 173-179. doi: 10.3321/j.issn:1000-6788.2009.02.022LI X H, ZHANG Z N, WANG L L. Terminal area capacity evaluation method based on following stability[J]. Systems Engineering-Theory & Practice, 2009, 29(2): 173-179(in Chinese). doi: 10.3321/j.issn:1000-6788.2009.02.022 [10] 王莉莉, 张新瑜, 张兆宁. 空中高速路交通流的跟驰现象及流量模型[J]. 西南交通大学学报, 2012, 47(1): 158-162. doi: 10.3969/j.issn.0258-2724.2012.01.026WANG L L, ZHANG X Y, ZHANG Z N. Following phenomenon and air freeway flow model[J]. Journal of Southwest Jiaotong University, 2012, 47(1): 158-162(in Chinese). doi: 10.3969/j.issn.0258-2724.2012.01.026 [11] 张洪海, 胡勇, 杨磊, 等. 多机场终端区微观交通流建模与仿真分析[J]. 西南交通大学学报, 2015, 50(2): 368-374. doi: 10.3969/j.issn.0258-2724.2015.02.025ZHANG H H, HU Y, YANG L, et al. Modeling and simulation analysis of microscopic traffic flow in multi-airport terminal airspace[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 368-374(in Chinese). doi: 10.3969/j.issn.0258-2724.2015.02.025 [12] 张洪海, 杨磊, 别翌荟, 等. 终端区进场交通流广义跟驰行为与复杂相变分析[J]. 航空学报, 2015, 36(3): 949-961.ZHANG H H, YANG L, BIE Y H, et al. Analysis on generalized following behavior and complex phasetransition law of approaching traffic flow in terminal airspace[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 949-961(in Chinese). [13] 任一雄, 徐怀. 参数情形下第一类曲面积分的计算[J]. 上饶师范学院学报, 2017, 37(6): 16-19.REN Y X, XU H. Calculation for the first type surface integral in parameter equation[J]. Journal of Shangrao Normal University, 2017, 37(6): 16-19(in Chinese). [14] BANDO M, HASEBE K, NAKAYAMA A, et al. Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1995, 51(2): 1035-1042. [15] JIANG R, WU Q, ZHU Z. Full velocity difference model for a car-following theory[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2001, 64: 017101. [16] 秦严严, 王昊, 冉斌. 考虑多前车反馈的智能网联车辆跟驰模型[J]. 交通运输系统工程与信息, 2018, 18(3): 48-54.QIN Y Y, WANG H, RAN B. Car-following model of connected and autonomous vehicles considering multiple feedbacks[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(3): 48-54(in Chinese). [17] KESTING A, TREIBER M. Calibrating car-following models by using trajectory data[J]. Transportation Research Record: Journal of the Transportation Research Board, 2008, 2088(1): 148-156. doi: 10.3141/2088-16 [18] 吴兵, 王文璇, 李林波, 等. 多前车影响的智能网联车辆纵向控制模型[J]. 交通运输工程学报, 2020, 20(2): 184-194.WU B, WANG W X, LI L B, et al. Longitudinal control model for connected autonomous vehicles influenced by multiple preceding vehicles[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 184-194(in Chinese). [19] 王湛, 熊佳俊, 陈浩. 航空器场面滑行速度与油耗研究[J]. 武汉理工大学学报(交通科学与工程版), 2017, 41(3): 391-394.WANG Z, XIONG J J, CHEN H. A research on aircraft taxiing speed and fuel consumption[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2017, 41(3): 391-394(in Chinese). -