-
摘要:
传统飞机机翼内部一般采用直线梁肋结构,使用曲线梁肋(SpaRibs)结构能够大大拓展机翼结构设计空间,进一步提升机翼的气动弹性性能。针对链接形状法(LSM)不易自动建模问题,提出使用投影映射方法进行2次空间转换,实现曲线梁肋机翼自动建模。基于遗传算法提出1种曲线梁肋机翼气动弹性综合优化设计方法。使用超声速偶极子格网法计算非定常气动力,采用模态法进行静气动弹性分析,在考虑颤振速度、静气动弹性变形约束的情况下,开展优化设计。某飞翼飞行器综合优化设计算例表明,使用曲线梁肋结构的机翼在重量增幅为1.321%的基础上,颤振速度可提高20.34%;在曲线梁肋构型的基础上进一步进行尺寸参数优化,在满足特定约束条件下,相较于初始构型减重21.76%;综合曲线梁肋构型参数和尺寸参数进行综合(一步)优化,相较于初始构型减重可达26.44%。使用曲线梁肋设计优化和尺寸优化相结合的情况下机翼能够有效地减轻机翼重量,为飞翼式飞行器的结构总体设计提供了一种快速有效的气动弹性综合优化设计方法。
Abstract:Traditionally, the internal structure of aircraft wings is generally straight spars and ribs. The use of curvilinear spars and ribs (SpaRibs) can greatly broaden the design space of the aircraft wing structure and further improve the aeroelastic performance of the aircraft wing. Since the linked shape method (LSM) is not easy to automatically model, the projection mapping method was proposed to perform two space transformations to realize the automatic modelling of the SpaRibs. Based on genetic algorithm, an aeroelastic comprehensive optimization design method was proposed for aircraft wings with SpaRibs. The supersonic doublet-lattice method was used to calculate the unsteady aerodynamics, and the modal method was used for the static aeroelastic analysis. The optimal design was carried out by considering the flutter velocity and static aeroelastic deformation constraints. A comprehensive optimization design calculation example of a flying wing aircraft shows that the flutter velocity can be increased by 20.34% on the basis of a weight increase of 1.321% for a wing with a SpaRibs structure. The size parameters are further optimized on the basis of the SpaRibs configuration. Under certain constraints, the weight reduction is 21.76% compared with the initial configuration; the comprehensive (one-step) optimization of the SpaRibs configuration parameters and size parameters is combined, and the weight reduction can reach 26.44% compared with the initial configuration. The weight of the aircraft wing can be effectively reduced by combining SpaRibs design optimization and size optimization, which provides a fast and effective aeroelastic comprehensive optimization design method for the overall design of the flying wing aircraft structure.
-
表 1 定义一组曲线梁肋与单位空间关系的参数
Table 1. Parameters defining relationship between a set of SpaRibs to unit space
参数 定义 p1 曲线梁肋的数量 p2 η1 p3 η2 p4 ξ12/ξ11 p5 ξ22/ξ21 p6 ξ32/ξ31 表 2 飞翼平面形状几何参数
Table 2. Geometric parameters of flying wing plane shape
定义 参数 半翼展/m 4.57 翼根弦长/m 5.53 转折处弦长/m 2.55 翼尖弦长/m 1.7 转折处翼展/m 2.02 前缘后掠角/(°) 35 表 3 曲线梁肋形状参数变化范围
Table 3. Boundary of shape parameters of SpaRibs
数值类型 p1 p2 p3 p4 p5 p6 最小值 定值 0.05 0.05 0.25 0.25 0.25 最大值 定值 0.95 0.95 4 4 4 注:p1表示曲线梁肋的数量,是预先设定的定值,没有变化范围,具体值根据翼盒中梁肋的数量来确定。 表 4 尺寸参数参考范围
Table 4. Boundary of size parameters
mm 类型 最小值 最大值 曲线梁肋 0.5 3 蒙皮 0. 5 2.5 凸缘 0.5 3 表 5 形状尺寸综合优化最优个体
Table 5. Optimal individual of comprehensive shape and size optimization
优化结果 最大遗传代数 种群大小 颤振速度/(m·s−1) 翼尖变形/% 翼尖扭角/(°) 质量/kg 最大应力/MPa A 20 20 816.09 4.24 −1.47 741.90 270.60 B 40 20 800.71 4.14 −1.41 780.08 261.38 C 40 30 802.27 4.07 −1.44 715.47 238.10 D 70 30 800.49 4.03 −1.46 706.17 280.63 -
[1] MULANI S, LOCATELLI D, KAPANIA R. Algorithm development for optimization of arbitrary geometry panels using curvilinear stiffeners[C]// Processings of the th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2010. [2] LOCATELLI D, MULANI S B, KAPANIA R K. Wing-Box weight optimization using curvilinear spars and ribs (SpaRibs)[J]. Journal of Aircraft, 2011, 48(5): 1671-1684. doi: 10.2514/1.C031336 [3] LOCATELLI D, MULANI S, KAPANIA R, et al. A multidisciplinary analysis optimization (MDAO) environment for wings having SpaRibs[C]//Processings of the 53th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012. [4] LOCATELLI D. Optimization of supersonic aircraft wing-box using curvilinear SpaRibs[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2012: 22-75. [5] LOCATELLI D, MULANI S B, KAPANIA R K. Parameterization of curvilinear spars and ribs for optimum wing structural design[J]. Journal of Aircraft, 2014, 51(2): 532-546. doi: 10.2514/1.C032249 [6] LOCATELLI D, YEILAGHI TAMIJANI A, MULANI S B, et al. Multidisciplinary optimization of supersonic wing structures using curvilinear spars and ribs (SpaRibs)[C]// Processings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013. [7] LIU Q, MULANI S B, KAPANIA R K. Global/local multidisciplinary design optimization of subsonic wing[C]// Processings of the 10th AIAA Multidisciplinary Design Optimization Conference. Reston: AIAA, 2014. [8] LIU Q, JRAD M, MULANI S B, et al. Integrated global wing and local panel optimization of aircraft wing[C]// Processings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015. [9] ROBINSON J H, DOYLE S, OGAWA G, et al. Aeroservoelastic optimization of wing structure using curvilinear spars and ribs (SpaRibs) [C]// Processings of the 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2016. [10] ZHAO W, KAPANIA R K. Multiobjective optimization of composite flying-wings with SpaRibs and multiple control surfaces[C]// Processings of the 2018 Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2018. [11] ZHAO W. Optimal design and analysis of Bio-Inspired, curvilinearly stiffened composite flexible wings[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2017. [12] ZHAO W, KAPANIA R K. Bilevel programming weight minimization of composite flying-wing aircraft with curvilinear spars and ribs[J]. AIAA Journal, 2019, 57(6): 2594-2608. doi: 10.2514/1.J057892 [13] DE S, JRAD M, KAPANIA R K. Structural optimization of internal structure of aircraft wings with curvilinear spars and ribs[J]. Journal of Aircraft, 2019, 56(2): 707-718. doi: 10.2514/1.C034818 [14] 徐元铭, 王东. 曲线片型加筋壁板的稳定性优化设计[J]. 北京航空航天大学学报, 2015, 41(4): 567-573.XU Y M, WANG D. Design and optimization of improving stability of curvilinear blade-stiffened panels[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 567-573 (in Chinese). [15] 张坤鹏, 郝鹏, 段于辉, 等. 基于深度学习的多级曲线加筋壁板布局优化设计[J]. 中国舰船研究, 2021, 16(4): 86-95.ZHANG K P, HAO P, DUAN Y H, et al. Layout optimization design of hierarchical curvilinearly stiffened panels based on deep learning[J]. Chinese Journal of Ship Research, 2021, 16(4): 86-95 (in Chinese). [16] SALOMON D. Curves and surfaces for computer graphics[M]. New York: Springer, 2006. [17] 李一航, 周东兴, 韩东升. 一种基于透视变换的远距离双目测距方法[J]. 电子测量技术, 2021, 44(7): 93-99.LI Y H, ZHOU D X, HAN D S. Long-distance binocular ranging method based on perspective transformation[J]. Electronic Measurement Technology, 2021, 44(7): 93-99 (in Chinese). [18] HOLLAND J H. Adaptation in natural and artificial systems[M]. Cambridge: The MIT Press, 1992: 1-50. [19] HAFTKA R T, GURDAL Z. Penalty function method, elements of structural optimization [M]. London: Kluwer Academic Publishers, 1992: 186-198. [20] GEN M, CHENG R. Genetic algorithm and engineering design[M]. New York: John Wiley&Sons, 1997: 21-30. [21] 陆依斐. 美新型轰炸机B-21亮相[N]. 解放日报, 2022-12-05(008).LU Y F. US new bomber B-21 appears[N]. Liberation Daily, 2022-12-05(008)(in Chinese). [22] 马俊, 郭媛丹, 李雪, 等. 美防长冲着中国炫耀军力[N]. 环球时报, 2022-12-05(1).MA J, GUO Y D, LI X, et al. US defense minister showing off military power to China [N]. Global Times, 2022-12-05(1)(in Chinese). [23] 魏伟, 肖东风. 大国争相研制新一代隐形轰炸机[N]. 环球时报, 2022-12-03(4).WEI W, XIAO D F. Great powers vying to develop a new generation of stealth bombers[N]. Global Times, 2022-12-03(4)(in Chinese). [24] 杨佑绪, 吴志刚, 杨超. 飞翼结构构型气动弹性优化设计方法[J]. 航空学报, 2013, 34(12): 2748-2756. doi: 10.7527/S1000-6893.2013.0353YANG Y X, WU Z G, YANG C. An aeroelastic optimization design approach for structural configuration of flying wings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12): 2748-2756 (in Chinese). doi: 10.7527/S1000-6893.2013.0353 [25] YANG Y X, WU Z G, YANG C. Equivalent plate modeling for complex wing configurations[J]. Procedia Engineering, 2012, 31: 409-415. doi: 10.1016/j.proeng.2012.01.1044 [26] 杨佑绪. 面向机翼构型的气动弹性综合设计方法研究[D]. 北京: 北京航空航天大学, 2013: 57-58.YANG Y X. Wing Configuration oriented aeroelastic integrated design method study[D]. Beijing: Beihang University, 2013: 57-58(in Chinese). [27] 万志强, 刘东岳, 唐长红, 等. 大型飞机翼梁位置对气动弹性优化的影响研究[J]. 中国科学: 技术科学, 2012, 42(3): 352-358.WAN Z Q, LIU D Y, TANG C H, et al. Study on the influence of wing beam position on aeroelastic optimization of large aircraft[J]. Scientia Sinica (Technologica), 2012, 42(3): 352-358 (in Chinese). [28] JRAD M, DE S, KAPANIA R K. Global-local aeroelastic optimization of internal structure of transport aircraft wing[C]// Processings of the 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2017. [29] LIU Q. EBF3GLWingOpt: a framework for multidisciplinary design optimization of wings using SpaRibs[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2017. -