留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星载GNSS反射信号台风检测及风眼位置估计

甄佳欢 朱云龙 杨东凯 张国栋 王峰

甄佳欢,朱云龙,杨东凯,等. 星载GNSS反射信号台风检测及风眼位置估计[J]. 北京航空航天大学学报,2025,51(6):2106-2118 doi: 10.13700/j.bh.1001-5965.2023.0395
引用本文: 甄佳欢,朱云龙,杨东凯,等. 星载GNSS反射信号台风检测及风眼位置估计[J]. 北京航空航天大学学报,2025,51(6):2106-2118 doi: 10.13700/j.bh.1001-5965.2023.0395
ZHEN J H,ZHU Y L,YANG D K,et al. Detection of typhoons and estimation of eye position using satellite-based GNSS-reflectometry[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2106-2118 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0395
Citation: ZHEN J H,ZHU Y L,YANG D K,et al. Detection of typhoons and estimation of eye position using satellite-based GNSS-reflectometry[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2106-2118 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0395

星载GNSS反射信号台风检测及风眼位置估计

doi: 10.13700/j.bh.1001-5965.2023.0395
基金项目: 

灾害天气国家重点实验室开放课题(2024LASW-B20);博士后创新人才支持计划(BX20200039)

详细信息
    通讯作者:

    E-mail:wangf.19@163.com

  • 中图分类号: TN967.1

Detection of typhoons and estimation of eye position using satellite-based GNSS-reflectometry

Funds: 

The Open Grants of the State Key Laboratory of Severe Weather (2024LASW-B20); China National Postdoctoral Program for Innovative Talents (BX20200039)

More Information
  • 摘要:

    全球导航卫星系统(GNSS)反射信号主要利用时延-多普勒图(DDM)的奇异性对台风进行研究。但由于模糊函数的存在,会使得这一奇异特征被模糊从而影响检测性能。通过将 DDM反卷积去除模糊函数的影响后再重构归一化散射系数(NBRCS)并将其映射到空间域,对台风事件检测算法及风眼位置估计算法进行研究。根据台风场内的DDM时间序列重构得到空间域NBRCS分布序列,定义台风敏感特征观测量,并基于置信区间距离半径的滑动窗口异常检测方法来检测台风事件;提出一种台风眼位置估计算法,通过模型匹配算法将重构所得空间域散射系数与模型数据集匹配以得到风眼位置。结果表明:台风检测算法的检测性能对信噪比(SNR)敏感,信噪比越高检测性能越好,当SNR为8时,台风检测性能接收机操作特性(ROC)曲线的曲线下面积(AUC)为0.80;在4种SNR下风眼位置估计的平均误差不超过0.3°,均方根误差不超过0.6°。

     

  • 图 1  星载GNSS-R空间坐标系

    Figure 1.  Spaceborne GNSS-R space coordinate system

    图 2  海面TSM模型示意图

    Figure 2.  Schematic diagram of TSM model at sea

    图 3  空间观测范围相对台风风场的分布

    Figure 3.  Distribution of spatial observation range relative to tropical cyclone wind field

    图 4  台风风场和常规风场DDM分布

    Figure 4.  DDM distribution of tropical cyclone wind field and conventional wind field

    图 5  仿真场景下等时延线和等多普勒线的分布

    Figure 5.  Distribution of iso-delay lines and iso-Doppler lines in simulation scenarios

    图 6  反卷积结果

    Figure 6.  Result of deconvolution

    图 7  空间模糊问题

    Figure 7.  Problem of spatial ambiguity

    图 8  CYGNSS实测DDM

    Figure 8.  Actually measured DDM of CYGNSS

    图 9  空间域NBRCS映射结果

    Figure 9.  Mapping results of spatial domain NBRCS

    图 10  特征观测量$ {D_\sigma } $变化趋势

    Figure 10.  Changing tendency of $ {D_\sigma } $

    图 11  子序列置信区间距离半径变化

    Figure 11.  Changing tendency of subsequence confidence interval distance radius

    图 12  台风检测算法ROC曲线

    Figure 12.  ROC curve of typhoon detection algorithm

    图 13  模型匹配算法流程

    Figure 13.  Flow chart of model matching algorithm

    图 14  部分模型NBRCS示意图

    Figure 14.  Part of the model NBRCS schematic

    表  1  台风海况GNSS-R仿真参数

    Table  1.   GNSS-R simulation parameters of tropical cyclone

    参数 描述 取值范围
    |T|/m GNSS卫星位置(CY02-DDMI2)
    |R|/m GNSS-R卫星位置(CY02-DDMI2)
    |vt|/(m·s−1) GNSS卫星速度(CY02-DDMI2)
    |vr|/(m·s−1) GNSS-R卫星速度(CY02-DDMI2)
    Pt/W GNSS发射功率 26.8
    Gt/dB GNSS发射天线增益 12.1
    Gr/dB GNSS-R接收天线增益 1
    u10/(m·s−1) 台风风场风速
    S/km 散射区 100×100
    Sx,y/km 散射单元 1×1
    下载: 导出CSV

    表  2  台风“山竹”参数

    Table  2.   Parameters of the tropical cyclone “Mangkhut”

    台风名称最大风速/(m·s−1)最大风速半径/km台风眼位置
    山竹72.755.56(124.3537°, 17.1511°)
    下载: 导出CSV

    表  3  台风样本

    Table  3.   Tropical cyclone samples

    序号台风编号台风名称
    12018250N12170台风“山竹”
    22021197N19135台风“烟花”
    32021266N11149台风“Mindulle”
    42021222N12262台风“Linda”
    52019278N16165超强台风“海贝思”
    62018263N12146台风“潭美”
    72021172N11147台风“Champi”
    82020299N11144超强台风“天鹅”
    92019268N10155台风“米娜”
    102018263N12146台风“玛莉亚”
    下载: 导出CSV

    表  4  匹配结果

    Table  4.   Matching result

    图像 对应风
    眼经度/(°)
    对应风
    眼纬度/(°)
    图像的
    均方根误差
    图14(a) 124.4537 17.3511 51.48
    图14(b) 124.0537 17.2511 49.45
    图14(c) 124.2537 17.2511 48.73
    图14(d) 124.3537 17.4511 52.64
    下载: 导出CSV

    表  5  时序DDM联合估计结果

    Table  5.   Results of time series DDM joint estimation

    台风 平均误差/(°) 均方根误差/(°)
    经度 纬度 经度 纬度
    1 0.269 0.077 0.457 0.410
    2 0.322 0.259 0.564 0.419
    3 −0.075 0.575 0.141 0.591
    4 0.257 0.000 0.470 0.800
    5 −0.144 0.606 0.179 0.655
    6 −0.275 0.100 0.534 0.660
    7 −0.270 −0.530 0.395 0.269
    8 −0.275 0.567 0.534 0.568
    9 0.295 −0.195 0.542 0.380
    10 0.490 0.148 0.715 0.415
    下载: 导出CSV

    表  6  风眼估计结果误差绝对值与均方根误差随信噪比的变化

    Table  6.   Change of root mean square error and deviation absolute value with SNR

    信噪比 误差绝对值/(°) 均方根误差/(°)
    经度 纬度 经度 纬度
    SNR=8 0.275 0.100 0.534 0.269
    SNR=6 0.125 0.338 0.534 0.411
    SNR=4 0.113 0.138 0.627 0.582
    SNR=2 0.638 0.663 0.649 0.664
    下载: 导出CSV

    表  7  不同信噪比下风眼位置估计误差

    Table  7.   Estimation deviation of typhoon eye position under different SNR

    信噪比 平均误差/(°) 均方根误差/(°)
    经度 纬度 经度 纬度
    SNR=8 0.116 0.160 0.430 0.446
    SNR=6 0.087 0.143 0.398 0.500
    SNR=4 0.022 0.141 0.399 0.594
    SNR=2 0.143 0.278 0.473 0.645
    下载: 导出CSV
  • [1] 国家气候中心. 2023年汛期全国气候趋势滚动预测[EB/OL]. (2023-05-08) [2023-06-18]. http://ncc-cma.net/climate/pred?h_id=100117.

    National Climate Centre. Rolling forecast of national climate trend in flood season in 2023[EB/OL]. (2023-05-08) [2023-06-18].http://ncc-cma.net/climate/pred?h_id=100117(in Chinese).
    [2] 白雪梅, 赵琳娜, 王彬雁, 等. 台风灾害影响评估系统业务进展[C]//第 32 届中国气象学会年会S23 第五届研究生年会会议论文集, 2015: 266-267.

    BAI X M, ZHAO L N, WANG B Y, et al. Progress of typhoon disaster impact assessment system[C]//Proceedings of the 32nd Annual meeting of the Chinese Meteorological Society S23 The 5th Annual Meeting of Graduate Students, 2015: 266-267(in Chinese).
    [3] 梁必骐, 梁经萍, 温之平. 中国台风灾害及其影响的研究[J]. 自然灾害学报, 1995, 4(1): 84-91.

    LIANG B Q, LIANG J P, WEN Z P. Study of typhoon disasters and its affects in China[J]. Journal of Natural Disasters, 1995, 4(1): 84-91(in Chinese).
    [4] 李晴. 多参数海洋浮标监测系统研究[D]. 上海: 上海海洋大学, 2017: 12-16.

    LI Q. Research on multi-parameter marine buoy monitoring system[D]. Shanghai: Shanghai Ocean University, 2017: 12-16(in Chinese).
    [5] 刘宏苏. 星载GNSS-R监测台风变化过程的研究[D]. 南京: 南京信息工程大学, 2021: 9-11.

    LIU H S. Study on monitoring typhoon change process by satellite-borne GNSS-R[D]. Nanjing: Nanjing University of Information Science & Technology, 2021: 9-11(in Chinese).
    [6] LI X F, ZHANG J A, YANG X F, et al. Tropical cyclone morphology from spaceborne synthetic aperture radar[J]. Bulletin of the American Meteorological Society, 2013, 94(2): 215-230. doi: 10.1175/BAMS-D-11-00211.1
    [7] MEI W, LIEN C C, LIN I I, et al. Tropical cyclone-induced ocean response: a comparative study of the South China Sea and tropical northwest Pacific*, +[J]. Journal of Climate, 2015, 28(15): 5952-5968.
    [8] 陈皓一. 基于深度强化学习算法的多尺度气旋监测方法研究[D]. 天津: 天津大学, 2019: 9-11.

    CHEN H Y. Research on multi-scale cyclone monitoring method based on deep reinforcement learning algorithm[D]. Tianjin: Tianjin University, 2019: 9-11(in Chinese).
    [9] GLEASON S, GEBRE-EGZIABHER D. GNSS 应用与方法[M]. 杨东凯, 译. 北京: 电子工业出版社, 2011.

    GLEASON S, GEBRE-EGZIABHER D. GNSS applications and methods[M]. YANG D K, translated. Beijing: Publishing House of Electronics Industry, 2011(in Chinese).
    [10] 杨东凯, 李晓辉, 王峰. GNSS反射信号海洋遥感应用现状分析[J]. 无线电工程, 2019, 49(10): 843-848. doi: 10.3969/j.issn.1003-3106.2019.10.001

    YANG D K, LI X H, WANG F. Analysis of application status of GNSS reflected signal in ocean remote sensing[J]. Radio Engineering, 2019, 49(10): 843-848(in Chinese). doi: 10.3969/j.issn.1003-3106.2019.10.001
    [11] 万玮, 陈秀万, 李国平, 等. GNSS-R遥感国内外研究进展[J]. 遥感信息, 2012, 27(3): 112-119. doi: 10.3969/j.issn.1000-3177.2012.03.019

    WAN W, CHEN X W, LI G P, et al. GNSS reflectometry: a review of theories and empirical applications in ocean and land surfaces[J]. Remote Sensing Information, 2012, 27(3): 112-119(in Chinese). doi: 10.3969/j.issn.1000-3177.2012.03.019
    [12] 万玮, 陈秀万, 彭学峰, 等. GNSS遥感研究与应用进展和展望[J]. 遥感学报, 2016, 20(5): 858-874.

    WAN W, CHEN X W, PENG X F, et al. Overview and outlook of GNSS remote sensing technology and applications[J]. Journal of Remote Sensing, 2016, 20(5): 858-874(in Chinese).
    [13] 李杰, 杨东凯, 洪学宝, 等. GNSS线极化天线干涉信号反演土壤湿度算法研究与测试[J]. 北京航空航天大学学报, 2024, 50(3): 874-885.

    LI J, YANG D K, HONG X B, et al. Research and test of soil moisture retrieval algorithm based on GNSS linearly polarized antenna interference signal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(3): 874-885(in Chinese).
    [14] CAMPS A, PARK H, ALONSO-ARROYO A. Wind speed maping from the ISS using GNSS-R? a simulation study[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium-IGARSS. Piscataway: IEEE Press, 2013: 382-385.
    [15] WANG F, ZHANG G D, YANG D K, et al. Single-pass tropical cyclone detector and scene-classified wind speed retrieval model for spaceborne GNSS reflectometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4202716.
    [16] PARK H, CAMPS A, PASCUAL D, et al. Simulation study on tropicial cyclone tracking from the ISS using GNSS-R measurements[C]//Proceedings of the IEEE Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2014: 4062-4065.
    [17] LI C, HUANG W M, GLEASON S. Dual antenna space-based GNSS-R ocean surface mapping: oil slick and tropical cyclone sensing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1): 425-435. doi: 10.1109/JSTARS.2014.2341581
    [18] LI C, HUANG W M, WANG W. Simulation based tropical cyclone sensing using space-based GNSS-R[C]//Proceedings of the Oceans-St. John’s. Piscataway: IEEE Press, 2014: 1-4.
    [19] MORRIS M, RUF C S. Estimating tropical cyclone integrated kinetic energy with the CYGNSS satellite constellation[J]. Journal of Applied Meteorology and Climatology, 2017, 56(1): 235-245. doi: 10.1175/JAMC-D-16-0176.1
    [20] MORRIS M, RUF C S. Determining tropical cyclone surface wind speed structure and intensity with the CYGNSS satellite constellation[J]. Journal of Applied Meteorology and Climatology, 2017, 56(7): 1847-1865. doi: 10.1175/JAMC-D-16-0375.1
    [21] MAYERS D, RUF C. Determining tropical cyclone center location with CYGNSS wind speed measurements[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2019: 7529-7532.
    [22] PARK H, CAMPS A, VALENCIA E, et al. Retracking considerations in spaceborne GNSS-R altimetry[J]. GPS Solutions, 2012, 16(4): 507-518.
    [23] 张益强. 基于GNSS反射信号的海洋微波遥感技术[D]. 北京: 北京航空航天大学, 2008: 46-52.

    ZHANG Y Q. Ocean microwave remote sensing using GNSS ref-lection signal[D]. Beijing: Beihang University, 2008: 46-52(in Chinese).
    [24] WILLOUGHBY H E, DARLING R W R, RAHN M E. Parametric representation of the primary hurricane vortex. part II: a new family of sectionally continuous profiles[J]. Monthly Weather Review, 2006, 134(4): 1102-1120.
    [25] VORONOVICH A G, ZAVOROTNY V U. Bistatic radar equation for signals of opportunity revisited[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 1959-1968. doi: 10.1109/TGRS.2017.2771253
    [26] ZAVOROTNY V U, VORONOVICH A G. Scattering of GPS signals from the ocean with wind remote sensing application[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 951-964. doi: 10.1109/36.841977
    [27] ULABY F T. Microwave remote sensing active and passive[J]. Theory to Applications, 1986: 2059-2081.
    [28] MARCHAN-HERNANDEZ J F, CAMPS A, RODRIGUEZ-ALVAREZ N, et al. An efficient algorithm to the simulation of delay-Doppler maps of reflected global navigation satellite system signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2733-2740.
    [29] SHAH R, GARRISON J L, GRANT M S. Demonstration of bistatic radar for ocean remote sensing using communication satellite signals[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 619-623. doi: 10.1109/LGRS.2011.2177061
    [30] 王峰, 杨东凯, 张波, 等. 星载 GNSS 海洋反射信号建模与仿真[J]. 北京航空航天大学学报, 2022, 48(3): 419-429.

    WANG F, YANG D K, ZHANG B, et al. Modeling and simulation of spaceborne GNSS ocean-reflectometry[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 419-429(in Chinese).
    [31] VALENCIA E, CAMPS A, MARCHAN-HERNANDEZ J F, et al. Ocean surface’s scattering coefficient retrieval by delay-Doppler map inversion[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 750-754. doi: 10.1109/LGRS.2011.2107500
    [32] MARTIN-NEIRA M, D’ADDIO S, BUCK C, et al. The PARIS in-orbit demonstrator[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2009: II-322-II-325.
    [33] 田腾, 石茂林, 宋学官, 等. 基于滑动窗口的时间序列异常检测方法[J]. 仪表技术与传感器, 2021(7): 112-116. doi: 10.3969/j.issn.1002-1841.2021.07.022

    TIAN T, SHI M L, SONG X G, et al. Anomaly detecting method for time series based on sliding windows[J]. Instrument Technique and Sensor, 2021(7): 112-116(in Chinese). doi: 10.3969/j.issn.1002-1841.2021.07.022
  • 加载中
图(14) / 表(7)
计量
  • 文章访问数:  690
  • HTML全文浏览量:  47
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-19
  • 录用日期:  2023-09-15
  • 网络出版日期:  2023-10-16
  • 整期出版日期:  2025-06-30

目录

    /

    返回文章
    返回
    常见问答