Detection of typhoons and estimation of eye position using satellite-based GNSS-reflectometry
-
摘要:
全球导航卫星系统(GNSS)反射信号主要利用时延-多普勒图(DDM)的奇异性对台风进行研究。但由于模糊函数的存在,会使得这一奇异特征被模糊从而影响检测性能。通过将 DDM反卷积去除模糊函数的影响后再重构归一化散射系数(NBRCS)并将其映射到空间域,对台风事件检测算法及风眼位置估计算法进行研究。根据台风场内的DDM时间序列重构得到空间域NBRCS分布序列,定义台风敏感特征观测量,并基于置信区间距离半径的滑动窗口异常检测方法来检测台风事件;提出一种台风眼位置估计算法,通过模型匹配算法将重构所得空间域散射系数与模型数据集匹配以得到风眼位置。结果表明:台风检测算法的检测性能对信噪比(SNR)敏感,信噪比越高检测性能越好,当SNR为8时,台风检测性能接收机操作特性(ROC)曲线的曲线下面积(AUC)为0.80;在4种SNR下风眼位置估计的平均误差不超过0.3°,均方根误差不超过0.6°。
-
关键词:
- 全球导航卫星系统反射测量技术 /
- 台风检测 /
- 台风中心 /
- 全球导航卫星系统 /
- 热带气旋
Abstract:The singularity of the delay-Doppler map (DDM) is the primary focus of study on typhoons using global navigation satellite system (GNSS) reflectometry. However, due to the presence of ambiguity functions, this singularity is blurred, which affects detection performance. The normalized bistatic radar cross section (NBRCS) is reconstructed from deconvolving DDM and mapped to the spatial domain, based on which the detection of typhoon events and estimation algorithm of eye position is studied. The distribution sequence of NBRCS in the spatial domain can be obtained by reconstructing the DDM time series in the typhoon field. A detector of typhoon features is defined, and a sliding window anomaly detection method based on the confidence interval distance radius is used to detect typhoon events. A typhoon eye position estimation algorithm is proposed, which matches the reconstructed spatial scattering coefficient with the model dataset through a model-matching algorithm to obtain the eye position. The findings demonstrate how the signal-to-noise ratio (SNR) affects the typhoon detection algorithm's detection performance, with higher SNRs indicating greater detection performance. When the SNR is 8, the area under curve (AUC) of the receiver operating characteristic (ROC) curve of the typhoon detection performance is 0.80. The average deviation of the eye position estimation under four SNRs does not exceed 0.3°, and the root mean square deviation does not exceed 0.6°.
-
表 1 台风海况GNSS-R仿真参数
Table 1. GNSS-R simulation parameters of tropical cyclone
参数 描述 取值范围 |T|/m GNSS卫星位置(CY02-DDMI2) |R|/m GNSS-R卫星位置(CY02-DDMI2) |vt|/(m·s−1) GNSS卫星速度(CY02-DDMI2) |vr|/(m·s−1) GNSS-R卫星速度(CY02-DDMI2) Pt/W GNSS发射功率 26.8 Gt/dB GNSS发射天线增益 12.1 Gr/dB GNSS-R接收天线增益 1 u10/(m·s−1) 台风风场风速 S/km 散射区 100×100 Sx,y/km 散射单元 1×1 表 2 台风“山竹”参数
Table 2. Parameters of the tropical cyclone “Mangkhut”
台风名称 最大风速/(m·s−1) 最大风速半径/km 台风眼位置 山竹 72.7 55.56 ( 124.3537 °,17.1511 °)表 3 台风样本
Table 3. Tropical cyclone samples
序号 台风编号 台风名称 1 2018250N12170 台风“山竹” 2 2021197N19135 台风“烟花” 3 2021266N11149 台风“Mindulle” 4 2021222N12262 台风“Linda” 5 2019278N16165 超强台风“海贝思” 6 2018263N12146 台风“潭美” 7 2021172N11147 台风“Champi” 8 2020299N11144 超强台风“天鹅” 9 2019268N10155 台风“米娜” 10 2018263N12146 台风“玛莉亚” 表 4 匹配结果
Table 4. Matching result
表 5 时序DDM联合估计结果
Table 5. Results of time series DDM joint estimation
台风 平均误差/(°) 均方根误差/(°) 经度 纬度 经度 纬度 1 0.269 0.077 0.457 0.410 2 0.322 0.259 0.564 0.419 3 −0.075 0.575 0.141 0.591 4 0.257 0.000 0.470 0.800 5 −0.144 0.606 0.179 0.655 6 −0.275 0.100 0.534 0.660 7 −0.270 −0.530 0.395 0.269 8 −0.275 0.567 0.534 0.568 9 0.295 −0.195 0.542 0.380 10 0.490 0.148 0.715 0.415 表 6 风眼估计结果误差绝对值与均方根误差随信噪比的变化
Table 6. Change of root mean square error and deviation absolute value with SNR
信噪比 误差绝对值/(°) 均方根误差/(°) 经度 纬度 经度 纬度 SNR=8 0.275 0.100 0.534 0.269 SNR=6 0.125 0.338 0.534 0.411 SNR=4 0.113 0.138 0.627 0.582 SNR=2 0.638 0.663 0.649 0.664 表 7 不同信噪比下风眼位置估计误差
Table 7. Estimation deviation of typhoon eye position under different SNR
信噪比 平均误差/(°) 均方根误差/(°) 经度 纬度 经度 纬度 SNR=8 0.116 0.160 0.430 0.446 SNR=6 0.087 0.143 0.398 0.500 SNR=4 0.022 0.141 0.399 0.594 SNR=2 0.143 0.278 0.473 0.645 -
[1] 国家气候中心. 2023年汛期全国气候趋势滚动预测[EB/OL]. (2023-05-08) [2023-06-18]. http://ncc-cma.net/climate/pred?h_id=100117.National Climate Centre. Rolling forecast of national climate trend in flood season in 2023[EB/OL]. (2023-05-08) [2023-06-18].http://ncc-cma.net/climate/pred?h_id=100117(in Chinese). [2] 白雪梅, 赵琳娜, 王彬雁, 等. 台风灾害影响评估系统业务进展[C]//第 32 届中国气象学会年会S23 第五届研究生年会会议论文集, 2015: 266-267.BAI X M, ZHAO L N, WANG B Y, et al. Progress of typhoon disaster impact assessment system[C]//Proceedings of the 32nd Annual meeting of the Chinese Meteorological Society S23 The 5th Annual Meeting of Graduate Students, 2015: 266-267(in Chinese). [3] 梁必骐, 梁经萍, 温之平. 中国台风灾害及其影响的研究[J]. 自然灾害学报, 1995, 4(1): 84-91.LIANG B Q, LIANG J P, WEN Z P. Study of typhoon disasters and its affects in China[J]. Journal of Natural Disasters, 1995, 4(1): 84-91(in Chinese). [4] 李晴. 多参数海洋浮标监测系统研究[D]. 上海: 上海海洋大学, 2017: 12-16.LI Q. Research on multi-parameter marine buoy monitoring system[D]. Shanghai: Shanghai Ocean University, 2017: 12-16(in Chinese). [5] 刘宏苏. 星载GNSS-R监测台风变化过程的研究[D]. 南京: 南京信息工程大学, 2021: 9-11.LIU H S. Study on monitoring typhoon change process by satellite-borne GNSS-R[D]. Nanjing: Nanjing University of Information Science & Technology, 2021: 9-11(in Chinese). [6] LI X F, ZHANG J A, YANG X F, et al. Tropical cyclone morphology from spaceborne synthetic aperture radar[J]. Bulletin of the American Meteorological Society, 2013, 94(2): 215-230. doi: 10.1175/BAMS-D-11-00211.1 [7] MEI W, LIEN C C, LIN I I, et al. Tropical cyclone-induced ocean response: a comparative study of the South China Sea and tropical northwest Pacific*, +[J]. Journal of Climate, 2015, 28(15): 5952-5968. [8] 陈皓一. 基于深度强化学习算法的多尺度气旋监测方法研究[D]. 天津: 天津大学, 2019: 9-11.CHEN H Y. Research on multi-scale cyclone monitoring method based on deep reinforcement learning algorithm[D]. Tianjin: Tianjin University, 2019: 9-11(in Chinese). [9] GLEASON S, GEBRE-EGZIABHER D. GNSS 应用与方法[M]. 杨东凯, 译. 北京: 电子工业出版社, 2011.GLEASON S, GEBRE-EGZIABHER D. GNSS applications and methods[M]. YANG D K, translated. Beijing: Publishing House of Electronics Industry, 2011(in Chinese). [10] 杨东凯, 李晓辉, 王峰. GNSS反射信号海洋遥感应用现状分析[J]. 无线电工程, 2019, 49(10): 843-848. doi: 10.3969/j.issn.1003-3106.2019.10.001YANG D K, LI X H, WANG F. Analysis of application status of GNSS reflected signal in ocean remote sensing[J]. Radio Engineering, 2019, 49(10): 843-848(in Chinese). doi: 10.3969/j.issn.1003-3106.2019.10.001 [11] 万玮, 陈秀万, 李国平, 等. GNSS-R遥感国内外研究进展[J]. 遥感信息, 2012, 27(3): 112-119. doi: 10.3969/j.issn.1000-3177.2012.03.019WAN W, CHEN X W, LI G P, et al. GNSS reflectometry: a review of theories and empirical applications in ocean and land surfaces[J]. Remote Sensing Information, 2012, 27(3): 112-119(in Chinese). doi: 10.3969/j.issn.1000-3177.2012.03.019 [12] 万玮, 陈秀万, 彭学峰, 等. GNSS遥感研究与应用进展和展望[J]. 遥感学报, 2016, 20(5): 858-874.WAN W, CHEN X W, PENG X F, et al. Overview and outlook of GNSS remote sensing technology and applications[J]. Journal of Remote Sensing, 2016, 20(5): 858-874(in Chinese). [13] 李杰, 杨东凯, 洪学宝, 等. GNSS线极化天线干涉信号反演土壤湿度算法研究与测试[J]. 北京航空航天大学学报, 2024, 50(3): 874-885.LI J, YANG D K, HONG X B, et al. Research and test of soil moisture retrieval algorithm based on GNSS linearly polarized antenna interference signal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(3): 874-885(in Chinese). [14] CAMPS A, PARK H, ALONSO-ARROYO A. Wind speed maping from the ISS using GNSS-R? a simulation study[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium-IGARSS. Piscataway: IEEE Press, 2013: 382-385. [15] WANG F, ZHANG G D, YANG D K, et al. Single-pass tropical cyclone detector and scene-classified wind speed retrieval model for spaceborne GNSS reflectometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4202716. [16] PARK H, CAMPS A, PASCUAL D, et al. Simulation study on tropicial cyclone tracking from the ISS using GNSS-R measurements[C]//Proceedings of the IEEE Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2014: 4062-4065. [17] LI C, HUANG W M, GLEASON S. Dual antenna space-based GNSS-R ocean surface mapping: oil slick and tropical cyclone sensing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1): 425-435. doi: 10.1109/JSTARS.2014.2341581 [18] LI C, HUANG W M, WANG W. Simulation based tropical cyclone sensing using space-based GNSS-R[C]//Proceedings of the Oceans-St. John’s. Piscataway: IEEE Press, 2014: 1-4. [19] MORRIS M, RUF C S. Estimating tropical cyclone integrated kinetic energy with the CYGNSS satellite constellation[J]. Journal of Applied Meteorology and Climatology, 2017, 56(1): 235-245. doi: 10.1175/JAMC-D-16-0176.1 [20] MORRIS M, RUF C S. Determining tropical cyclone surface wind speed structure and intensity with the CYGNSS satellite constellation[J]. Journal of Applied Meteorology and Climatology, 2017, 56(7): 1847-1865. doi: 10.1175/JAMC-D-16-0375.1 [21] MAYERS D, RUF C. Determining tropical cyclone center location with CYGNSS wind speed measurements[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2019: 7529-7532. [22] PARK H, CAMPS A, VALENCIA E, et al. Retracking considerations in spaceborne GNSS-R altimetry[J]. GPS Solutions, 2012, 16(4): 507-518. [23] 张益强. 基于GNSS反射信号的海洋微波遥感技术[D]. 北京: 北京航空航天大学, 2008: 46-52.ZHANG Y Q. Ocean microwave remote sensing using GNSS ref-lection signal[D]. Beijing: Beihang University, 2008: 46-52(in Chinese). [24] WILLOUGHBY H E, DARLING R W R, RAHN M E. Parametric representation of the primary hurricane vortex. part II: a new family of sectionally continuous profiles[J]. Monthly Weather Review, 2006, 134(4): 1102-1120. [25] VORONOVICH A G, ZAVOROTNY V U. Bistatic radar equation for signals of opportunity revisited[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 1959-1968. doi: 10.1109/TGRS.2017.2771253 [26] ZAVOROTNY V U, VORONOVICH A G. Scattering of GPS signals from the ocean with wind remote sensing application[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 951-964. doi: 10.1109/36.841977 [27] ULABY F T. Microwave remote sensing active and passive[J]. Theory to Applications, 1986: 2059-2081. [28] MARCHAN-HERNANDEZ J F, CAMPS A, RODRIGUEZ-ALVAREZ N, et al. An efficient algorithm to the simulation of delay-Doppler maps of reflected global navigation satellite system signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2733-2740. [29] SHAH R, GARRISON J L, GRANT M S. Demonstration of bistatic radar for ocean remote sensing using communication satellite signals[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 619-623. doi: 10.1109/LGRS.2011.2177061 [30] 王峰, 杨东凯, 张波, 等. 星载 GNSS 海洋反射信号建模与仿真[J]. 北京航空航天大学学报, 2022, 48(3): 419-429.WANG F, YANG D K, ZHANG B, et al. Modeling and simulation of spaceborne GNSS ocean-reflectometry[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 419-429(in Chinese). [31] VALENCIA E, CAMPS A, MARCHAN-HERNANDEZ J F, et al. Ocean surface’s scattering coefficient retrieval by delay-Doppler map inversion[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 750-754. doi: 10.1109/LGRS.2011.2107500 [32] MARTIN-NEIRA M, D’ADDIO S, BUCK C, et al. The PARIS in-orbit demonstrator[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2009: II-322-II-325. [33] 田腾, 石茂林, 宋学官, 等. 基于滑动窗口的时间序列异常检测方法[J]. 仪表技术与传感器, 2021(7): 112-116. doi: 10.3969/j.issn.1002-1841.2021.07.022TIAN T, SHI M L, SONG X G, et al. Anomaly detecting method for time series based on sliding windows[J]. Instrument Technique and Sensor, 2021(7): 112-116(in Chinese). doi: 10.3969/j.issn.1002-1841.2021.07.022 -